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common aging-related conditions, including frailty, sarcopenia,
cardiovascular disease, and cognitive and functional
decline ( 11).

In some individuals, cancer and its treatments are hypothe-
sized to create sufficient damage to accelerate or accentuate the
rate of aging compared with that expected in the absence of
cancer ( 3–5). It is unknown if cancer and its treatments cause
multiple “hits” to biological systems leading to a paralleled
“normal” aging trajectory with weakened reserve (Phase Shift or
Accentuated Aging Hypothesis) or an altered aging trajectory
with quicker progression to functional decline (Accelerated
Aging Hypothesis) ( Figure 1 ) (12). To assert that cancer and its
treatments accelerate or accentuate aging, the following criteria
outlined by Margolick and Ferrucci must be met: “1) the anatomic
and functional manifestations seen must be the same as those
seen in usual aging; 2) the mechanisms underlying these mani-
festations must be the same as in aging, and 3) manifestations
and mechanisms should both be detected at a younger age than
usual.” ( 10) Evidence from preclinical models shows that radia-
tion ( 13–15) and genotoxic and cytotoxic anticancer therapies,
such as cisplatin, doxorubicin, paclitaxel, and temozolomide,
cause physiological changes consistent with several molecular
and cellular hallmarks of aging ( 7), including increased inflam-
mation ( 15,16), expanded senescent cell burden ( 17–21), de-
creased stem cells ( 15), and persistent DNA damage and
decreased telomere length ( 8,22–25). Compelling evidence from
long-term follow-up studies of pediatric and adolescent and
young adult cancer survivors suggests that cancer treatment
contributes to the onset of aging-related conditions, such as in-
cident comorbidities, functional loss, frailty, and cognitive de-
cline, decades earlier in life than expected ( 3,5,26–32).
Furthermore, observational studies have shown that survivors
of adult-onset cancers have a higher burden of mobility limita-
tions ( 33), comorbid conditions ( 34), and pain ( 34), and a greater
risk of functional and cognitive impairments compared with
healthy, age-matched controls ( 35–38).

Collectively, these findings suggest that cancer and its thera-
pies may produce unintended aging-related consequences.
However, conceptual, measurement, and methodological chal-
lenges have constrained efforts to identify, predict, and mitigate
the aging-related consequences of cancer and cancer treatment.
To address these constraints, in July 2018, the National Cancer
Institute (NCI) convened a think tank titled “Measuring Aging
and Identifying Aging Phenotypes in Cancer Survivors.” Think

tank presentations and discussions were guided by critical
questions generated by a planning committee of federal govern-
ment (ie, NCI and National Institute on Aging) and academic
representatives. Arti Hurria, MD, of the City of Hope, and
Jennifer Schrack, PhD, of the Johns Hopkins Bloomberg School
of Public Health, served as meeting chairs. The meeting’s scien-
tific discourse was enriched by the representation of diverse
disciplinary perspectives including clinical oncology, cancer bi-
ology, aging biology, gerontology and geriatrics, psychology, epi-
demiology, physical therapy, cognitive science, and systems
biology. This report synthesizes expert-informed deliberations
primed by the think tank and highlights opportunities to ex-
pand the evidence base for aging-related consequences of can-
cer and cancer treatment.

Conceptual and Measurement Considerations

Chronological age, or time since birth, is a proxy for underlying
physiological processes that change or accumulate over time
(39). It is positively associated with mortality, cancer, and other
morbidities, but it is not an etiologic factor and does not fully
explain the phenotypic and functional variability observed as
individuals age ( 40–42). For example, one 75-year-old individual
might be frail and use a wheelchair, whereas another might be
fit and run marathons, thus displaying quite different func-
tional ages or abilities to perform certain activities. Biological
age, as defined by Baker and Sprott, refers to the “biological
parameter[s] of an organism that either alone or in some multi-
variate composite will, in the absence of disease, better predict
functional capability at some late age than will chronological
age.” (42) Ideally, biological and functional age should be
strongly correlated, because as physiologic damage accumu-
lates and repair capacity becomes compromised, functional de-
cline eventually ensues ( 43).

The ability to advance knowledge of the short- and long-
term effects of cancer and its treatment on aging trajectories
has been constrained by a paucity of agreed-on measures to as-
sess aging processes and aging phenotypes in cancer survivors
(10,43). Think tank deliberations centered on clinical and biolog-
ical measures that capture heterogeneity in aging processes, are
aligned with the hallmarks of aging, ( 7) and have established
relationships with cancer, cancer treatments, mortality, or
other aging-related endpoints. Table 1 presents measures of ag-
ing to consider in studies of aging-related consequences of

Figure 1. Hypothesized trajectories of aging-related consequences of cancer and cancer treatment.
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cancer and cancer treatment. Box 1 summarizes additional con-
ceptual and measurement considerations discussed during the
think tank.

Clinical Measures

Although a variety of clinical measures of aging exist, think
tank deliberations focused on measures of functional status,
deficit accumulation, and cognitive function because of their

previously reported associations with mortality and/or likely
impact on aging-related outcomes in older adults and cancer
survivors ( 43).

Functional Status
Functional status can be measured subjectively and objec-
tively. Commonly used subjective measures of functional
status in aging studies include the Activities of Daily Living
and Instrumental Activities of Daily Living. In oncology set-
tings, the Eastern Cooperative Oncology Group and
Karnofsky performance status scales are frequently used and
are predictive of cancer survival ( 80–82). Objective measures
of functional status include grip strength, gait speed, chair
stands, and balance. Among these, gait speed and grip
strength are predictive of adverse health outcomes, includ-
ing mortality, and are feasible to measure in a clinical setting
(44,45,83).

Many measures of physical function have a detection ceiling
or floor, which challenges the ability to derive an accurate as-
sessment of functional outcomes among cancer survivors with
high- or low-performance status ( 84). Ceiling effects often occur
in younger, healthier cancer survivors, whereas floor effects

Table 1. Measures to consider including in research studies of aging-
related consequences of cancer and cancer treatment*

Measures References

Gait speed Studenski et al., 2011 ( 44)
Studenski et al., 2003 ( 45)
Cooper et al., 2010 ( 46)
Abellan van Kan et al., 2009 ( 47)

Timed Up and Go Podsiadlo et al., 1991 ( 48)
Grip strength Cooper et al., 2010 ( 46)
Fried (CHS) Frailty Phenotype Fried et al., 2001 ( 49)

De Vries et al., 2011 ( 50)
De�cit Accumulation Index/Frailty

Index
Mitnitski et al., 2001 ( 51)
De Vries et al., 2011 ( 50)

Clinical geriatric assessment Hurria et al., 2011 ( 52)
Hurria et al., 2005 ( 53)
Hurria et al., 2016 ( 54)
Extermann et al., 2012 ( 55)
Avelino-Silva et al., 2014 ( 56)
Jonna et al., 2016 ( 57)

Self-rated health Sargent-Cox et al., 2012 ( 58)
Levy et al., 2002 ( 59)
Demakakos et al., 2018 ( 60)
Kotter-Gru¨ hn et al., 2009 ( 61)

Cognitive assessments Lai et al., 2014 ( 62)
Hopkins Verbal Learning

Test-Revised
Controlled Oral Word

Association Test
The Trail Making Test

Wefel et al., 2011 ( 63)

Wefel et al., 2011 ( 63)

Wefel et al., 2011 ( 63)

Functional Assessment of
Cancer Therapy–Cognitive
(FACT-Cog)

Cella et al., 1993 ( 64)

PROMIS Cognitive Function and
Cognitive Function–Abilities

Fries et al., 2005 ( 65)
Lai et al., 2014 ( 62)

Fatigability Simonsick et al., 2014 ( 66)
Simonsick et al., 2016 ( 67)
Gresham et al., 2018 ( 36)

APOE4 Deelan et al., 2011 ( 68)
31p recovery time Hill et al., 2014 ( 69)

Mulder et al., 2009 ( 70)
Choi et al., 2016 ( 71)
Zane et al., 2017 ( 72)

P16INK4a He et al., 2017 ( 73)
Hannum’s clock (DNAm) Hannum et al., 2013 ( 74)
Horvath’s clock (DNAm) Booth et al., 2016 ( 75)

Horvath et al., 2018 ( 76)
Horvath 2013 ( 77)

PhenoAge (DNAm) Levine et al., 2018 ( 78)
Liu et al., 2018 ( 79)

*This table provides a list of measures to capture heterogeneity in aging pro-

cesses and aging-related functional outcomes. Although some measures can be

used independently, others, such as the geriatric assessment, require compila-

tion into a composite variable. 31p ¼ 31Phosphocreatine; APOE4¼ apolipopro-

tein E4; CHS ¼ Cardiovascular Health Study; DNAm ¼ DNA methylation.

Box 1. Conceptual, measurement, and methodological con-

siderations for research studies on aging-related conse-

quences of cancer and cancer treatment

Conceptual Considerations

• Consider aging from a life-course perspective with an

assessment of aging trajectories across all age groups.
• Engage systems biology to better understand aging pro-

cesses and trajectories from a cumulative de�cit

perspective.

Measurement Considerations

• Use clinically feasible, validated measures of physical

and cognitive function that improve sensitivity, reduce

participant burden, and are robust to age, ceiling, and

�oor effects.
• Use at least one objective measure of functional status

in clinical research studies, such as gait speed or grip

strength, at a minimum.

Methodological Considerations

• Leverage existing longitudinal measures and cohort

studies, preclinical models, and pooled datasets or con-

sortia, and conduct an initial study of common cancers

(eg, breast and prostate) to enroll a large enough sample

with variability by cancer type, therapy type, and past

exposures to discern the role of cancer and its treat-

ment on aging trajectories.
• Increase the number of older adult cancer patients with

comorbid conditions in clinical trials.
• Incorporate adaptive designs to achieve a suitable sample

size and adequate precision in the outcome measure.
• Identify the most important predictors and outcomes to

ensure enough participant variability and statistical

power, given available �nancial resources.
• Direct attention to survival bias in aging research (can-

cer survivors with the highest accumulation of de�cits

will die earlier and may not be captured in research

studies).
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typically are observed in the oldest, nonambulatory patients.
This challenge could be addressed with sequential testing, in
which all participants are first tested using a validated, basic
measure of function (eg, walk test). If an individual performs at
the ceiling or floor of the initial test, then additional validated
assessments can be used to discriminate functional limits and
abilities. It should be noted that the inability to perform the
functional test itself is a valuable indicator of health.

Deficit Accumulation
Much of the think tank discussion focused on measures of defi-
cit accumulation (eg, frailty and the geriatric assessment [GA])
to comprehensively evaluate aging-related outcomes in adult
cancer survivors, because it reflects cumulative multisystem
deterioration and nonspecific vulnerability to adverse outcomes
(43). There are several measures of frailty ( 49–51,85–87), includ-
ing the use of clinical judgment ( 87), rule-based approaches de-
fined by the presence of symptoms (eg, Fried Frailty Phenotype)
(49), and calculating the number of deficits (eg, the deficit accu-
mulation/frailty index or GA) ( 51). The Fried Frailty Phenotype,
deficit accumulation/frailty index, and GA predict functional de-
cline, hospitalization rates, and mortality ( 27,49,50,86,88–90) (al-
though the GA-mortality association in cancer survivors is less
studied) ( 91–94). The GA assesses multiple domains of illness
and health, including functional status, comorbidity, nutritional
status, cognition, social support, polypharmacy, and psycholog-
ical state (eg, depression, anxiety, and distress) ( 95–97), and is
predictive of chemotherapy toxicity and survival in geriatric on-
cology samples ( 43,97,98). Recently, the American Society of
Clinical Oncology recommended the GA for cancer patients
65 years and older receiving chemotherapy ( 95).

In the cancer context, the measurement of frailty and other
treatment-related outcomes should be modified when neces-
sary to consider domains relevant to pediatric, adolescent and
young adult, and midlife adult cancer survivors. For example,
assessing comorbidities at the point of diagnosis may be less
relevant to the prediction of treatment-associated frailty risk
among childhood and adolescent and young adult cancer survi-
vors. Future studies may consider reconceptualizing frailty on a
continuum ranging from “fit” to “frail” because intrinsic capac-
ity starts to decline early in adulthood and eventually contrib-
utes to the development of frailty ( 99). The concept of physical
and psychological resilience can be studied as a key predictor,
modifier, or outcome to inform aging processes in cancer survi-
vors. Resilience may also explain why some older cancer survi-
vors return to relatively normal levels of physical function after
receiving treatment, whereas others experience lower or more
rapidly decreasing levels ( 12).

Cognitive Function
Evidence suggests that cancer and its treatments can have
short- and long-term impacts on cognitive function in a subset
of cancer survivors ( 38,100–102). Although most research has
been conducted in breast cancer patients treated with chemo-
therapy with or without hormonal treatment, similar results
are emerging across other cancer diagnoses (eg, colon, prostate,
lymphoma, and testicular) and treatment modalities (cranial
and non-central nervous system radiation, endocrine, and hor-
mone ablation therapies) ( 101). Cognitive domains affected by a
variety of cancer treatment modalities include memory (ie,
working and recognition), processing speed, attention, and ex-
ecutive function ( 101). To facilitate comparison across studies,
the International Cognition and Cancer Task Force recommends

use of the Hopkins Verbal Learning Test-Revised (learning and
memory), the Controlled Oral Word Association Test (verbal flu-
ency and executive function), and the Trail Making Test (execu-
tive function) to assess cancer-related cognitive impairment
(CRCI) (63). Think tank participants reflected on using self-
reported measures (eg, Functional Assessment of Cancer
Therapy–Cognitive and the Patient-Reported Outcomes
Measurement Information System Cognitive Function and
Cognitive Function–Abilities) ( 64,65) as well as the utility of re-
fining neurocognitive measures to reduce assessment burden
and improve feasibility in clinical and research settings while
preserving sensitivity to detect small changes in function.
Think tank participants discussed the potential value of
leveraging cognitive neuroscience paradigms to improve mea-
surement sensitivity and specificity of the cognitive processes
and domains affected by cancer and cancer treatment expo-
sures ( 103).

Think tank participants noted that neuroimaging techniques
to assess changes in brain structure and function are promising
and feasible to conduct in research settings. Moreover, blood,
plasma, or other fluid biomarkers, like cerebral spinal fluid ana-
lytes collected clinically for central nervous system lymphoma,
might be used to elucidate mechanisms of CRCI ( 104).

Additional inquiry is needed to clarify why certain areas of
the brain are more vulnerable to cancer treatments. There are
emerging and consistent observations that individuals with the
apolipoprotein E4 ( APOE4) gene polymorphism, the strongest
genetic risk factor for Alzheimer disease, are more susceptible
to cancer-related cognitive decline than those with other APOE
genotypes ( 100,102,105). These observations suggest that gene-
treatment interactions may accelerate brain aging or affect in-
termediate aging processes that in turn influence cognition.
Cross-disciplinary studies both of cancer survivors and non-
cancer populations with cognitive decline or Alzheimer disease
could be leveraged to understand risks for CRCI and cognitive
aging and whether these endpoints share common pathways.

Biological Measures

Considerable effort has been made to identify biomarkers of the
aging process and calculate biological age ( 41). In the following
section, we highlight biological measures discussed at the think
tank because of their relevance to several hallmarks of aging
(eg, genomic instability, stem cell exhaustion, cellular senes-
cence, inflammation, mitochondrial dysfunction, and epige-
netic alterations) and their relationships with cancer
treatments and aging-related processes and endpoints.

DNA Damage and Mutation Burden
The frequencies of single nucleotide variants and chromosomal
aberrations are modified at varying rates over the life course
due to environmental exposures and endogenous processes, in-
cluding DNA repair capacity ( 106). In addition to contributing to
cancer etiology, these genomic changes also compromise the
function of tissues, including those that are largely post-
mitotic. For example, the decline in human skeletal muscle
function with age might be attributed to amassing somatic
mutations in satellite cells ( 107,108). Higher mutation burden
may compromise the ability of these cells to regenerate, re-
model, and maintain skeletal muscle mass, resulting in sarco-
penia and reduced function. DNA damage has also been
associated with exposure to chemotherapy and/or radiation
(109,110).
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Stem Cell Depletion and Dysfunction
Stem cells play an important role in tissue maintenance and re-
pair in adulthood. Loss of stem cell homeostasis with aging is
associated with epigenetic reprogramming, deregulated nutri-
ent sensing, and accumulating DNA damage leading to a loss of
self-renewing potential and stem cell exhaustion ( 111). Stem
cell depletion and dysfunction are associated with osteoporosis
and sarcopenia due to the loss of mesenchymal and muscle
stem cells, respectively ( 111–113). Reduced diversity of aging he-
matopoietic stem cells is associated with clonal hematopoiesis
and increased risk of a subsequent diagnosis of myeloid or lym-
phoid neoplasia and increased all-cause mortality ( 114). Also,
stem cell exhaustion has been linked to reduced tolerance of
chemotherapy, and specific therapies, such as doxorubicin and
daunorubicin, have been shown to induce stem cell exhaustion,
DNA damage, telomere attrition, and cellular senescence ( 115).

P16INK4a
Cellular senescence is a multifaceted cell fate response both to
stressful and physiological stimuli. Senescent cells cease prolif-
eration, which is a crucial anticancer mechanism. However,
they also develop a robust senescence-associated secretory
phenotype that can alter the structure and function of the tis-
sues in which they reside, particularly by increasing inflamma-
tion ( 17). Although there are no senescence-specific biomarkers,
there are a dozen or more markers that can identify senescent
cells with some confidence. P16INK4a has been associated with
a loss of physical function in older adults, affecting mobility,
muscle strength, and central obesity ( 73,116). In mice, the elimi-
nation of p16INK4a-positive cells prevents or ameliorates a di-
verse number of aging-related pathologies, including cancer
(117). In prospectively followed breast cancer patients treated
with standard adjuvant chemotherapy, p16INK4a expression
nearly doubled after they received doxorubicin and cyclophos-
phamide chemotherapy in an adjuvant setting—equating to
more than 14.7 years of chronological aging ( 8,116). Although
measures of cellular senescence are still in their infancy, they
demonstrate translational promise to contextualize biological
aging in humans.

Inflammatory Markers
Aging is strongly associated with increased inflammation ( 118–
121). Increased systemic levels of proinflammatory cytokines
contribute to physiological decline ( 118–122) and incidence of dis-
ease, including cancer and other acute (eg, infection) and chronic
conditions. Inflammatory mediators such as interleukin-6, high-
sensitivity C-reactive protein, and receptor for advanced
glycation end products–related inflammation are biomarkers of
susceptibility to frailty, disability, morbidity, and mortality at
older ages ( 123–125). Also, the frequency of senescent cells in tis-
sues increases with age, after genotoxic insults, and after sys-
temic cancer therapy ( 17). These cells secrete numerous
inflammatory cytokines, including interleukin-1 b and
interleukin-6, as part of the above-described senescence-associ-
ated secretory phenotype. Given that increased inflammation
and cellular senescence are associated with chemotherapy and
radiation ( 126,127), panels of inflammatory markers could be
used to monitor the long-term consequences of cancer
treatment.

31Phosphocreatine Recovery Time
Mitochondria are a major source of the chemical energy in cells
and are needed both for survival and function. The function of

these vital organelles has been shown to decline with age in
several tissues, including the brain and skeletal muscle ( 69), as
well as in pancreatic beta cells ( 70). Diminished mitochondrial
function can be measured in numerous ways, including
31Phosphocreatine recovery time, an indicator of mitochondrial
capacity in skeletal muscle in humans ( 71) that has been linked
to reduced skeletal muscle strength and decreased walking per-
formance ( 72).

Epigenetic Age
Changes in the epigenetic state of the genome can affect gene
expression, and such epigenomic changes have been identified
in aging tissues and cells ( 78). Epigenetic changes are reversible,
and measures of DNA methylation (DNAm) age may help iden-
tify or evaluate promising interventions against accelerated or
accentuated aging ( 76). Further, epigenetic age can be measured
from blood, a biospecimen that is feasible to collect in large epi-
demiologic studies. Multitissue DNAm-based measures of bio-
logical age, including Horvath’s clock ( 77) and DNAm PhenoAge
(78), are promising because they apply to different DNA sources
(sorted cells, organs, and tissues) across the life span ( 76).
Hannum’s clock, a single-tissue estimator of CpG markers in
whole blood, has also been used as a measure of biological age;
however, its use may lead to biased estimates in nonblood tis-
sue, and estimates may be subject to confounding from age-
related changes in blood composition ( 74,76,128). DNAm mea-
sured in blood has been associated with an increased risk of
frailty, physical function, and all-cause mortality ( 78,128–131).
Importantly, accelerated epigenetic aging has also been linked
to increased cancer risk and cancer-specific mortality ( 78,131–
135). More research is needed to understand how epigenetic age
can be measured longitudinally among cancer survivors and
whether it is possible to slow biological aging by targeting age-
related DNAm levels.

The Pace of Aging
The Pace of Aging is a composite of repeated measures of 18 bio-
markers, including measures of cardiovascular, metabolic, im-
mune, kidney, liver, and lung function, as well as dental health
and leukocyte telomere length, which together assesses biologi-
cal change across organ systems and predicts aging-related pro-
cesses (136). Among a 1972–1973 birth cohort followed through
age 38 years, individuals with a faster Pace of Aging showed evi-
dence of functional deficits and decline (eg, balance, grip
strength, motor coordination, physical limitations, cognitive de-
cline, self-reported health, facial aging) ( 136) and tended to have
more psychosocial factors associated with aging-related mor-
bidity (eg, shorter-lived families, low childhood socioeconomic
status, and adverse childhood experiences) ( 137). However, the
Pace of Aging has not been tested as a predictor of mortality.
Future work is needed to understand the relationship among
the Pace of Aging, cancer, cancer treatment, and mortality.

Methodological Considerations

To date, the identification of—and discrimination between—
aging trajectories related to cancer and cancer treatment has
been hindered by resource capacity limits for sustained accrual,
repeated longitudinal assessment, and expanded endpoint sur-
veillance of population-based cohorts of cancer survivors
(Box 1). Longitudinal assessments of functional capacity are re-
quired to characterize aging trajectories over time. Longitudinal
studies that track within-person change can distinguish true

C
O

M
M

E
N

T
A

R
Y

J. L. Guida et al. | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/advance-article-abstract/doi/10.1093/jnci/djz136/5535600 by U

niversity of C
hicago Libraries - Law

 user on 26 O
ctober 2019

Deleted Text: 83&ndash;85
Deleted Text: 88,89
Deleted Text: 8, 89
Deleted Text: .
Deleted Text: 91&ndash;94
Deleted Text: 91&ndash;95
Deleted Text: 96&ndash;98
Deleted Text: 99,100
Deleted Text: <sup>108</sup>
Deleted Text: 106, 109,110
Deleted Text: 108, 110&ndash;113
Deleted Text: 108, 113&ndash;117


aging (a process of change) from differences between individu-
als (136,138,139). Moreover, longitudinal studies can account for
time-varying exposures, such as weight, diet, exercise, and ciga-
rette smoking, and more precisely observe age, period, and co-
hort effects.

Tools are needed to identify and predict vulnerable sub-
groups at risk for developing aging-related consequences of
cancer and treatment. Consideration of personal risk and psy-
chosocial factors over the life course is warranted because
they affect biological aging and modify aging trajectories ( 137).
Many studies exclude participants with vulnerabilities such as
anxiety, depression, lack of social support, and social isolation
despite evidence that suggests these vulnerabilities are impor-
tant for a holistic understanding of functional outcomes at
any age ( 95,97,140). Cancer surveillance systems like the
Surveillance, Epidemiology, and End Results Program of the
NCI might be leveraged as methodological and infrastructure
resources for special studies addressing long-term functional
outcomes and adverse treatment effects. Dedicated research
infrastructures are needed to harmonize and aggregate data
across multiple sources (eg, electronic health records, vali-
dated instruments, geospatial and health-care delivery
environments).

Opportunities to Expand the Evidence Base for
Aging-Related Consequences of Cancer and
Cancer Treatment

The objective of the think tank was to discuss empirically
justified measures of aging to consider including in studies
of aging-related consequences of cancer and cancer treat-
ment. During meeting deliberations, several opportunities to
expand the evidence base emerged ( Box 2). A better under-
standing of the mechanisms that contribute to cancer- and
treatment-associated aging will advance our efforts to iden-
tify aging phenotypes and develop new evidence-based strat-
egies to prevent, mitigate, and slow cancer- and treatment-
related effects.

Preclinical Research

Preclinical studies using appropriately aged animals or alterna-
tive models of aged human systems (ie, biomimetics) could be
used to study cancer and aging processes. Basic science findings
from mechanistic studies could lead to novel translational
research and new or modified intervention approaches that
reduce toxicity and long-term morbidity. As targeted cancer
therapies are developed and integrated into clinical care, exam-
ining their impacts on aging trajectories of cancer survivors will
be paramount.

Clinical Research

Studies of cancer survivors could be designed to provide data on
long-term and late-emerging effects of combinations of cancer
therapies on aging endpoints. The need to launch adequately
powered studies with comprehensive treatment- and aging-
related data from cancer survivors with variability by cancer type,
treatment, and past exposures was discussed. Think tank partici-
pants endorsed a focus on common cancers (eg, breast and pros-
tate) first. Expanding eligibility criteria in clinical trials to include
older adults with comorbidities and higher levels of frailty was

recommended to assess treatment effects and toxicity ( 141).
Cancer etiology and other epidemiologic cohort studies could be
leveraged, but most were not designed to capture detailed cancer
treatment, follow-up outcomes (eg, recurrence), or aging end-
points. Incentivizing existing cancer patient or survivor and aging
cohort studies to collect aging processes, outcomes, and cancer
treatment data, respectively, was discussed as one option to le-
verage extant research investment infrastructures.

Clinical Practice

Evidence-based clinical assessments of functional capacity col-
lected prior to the initiation of cancer treatments and at regular
follow-up intervals thereafter are needed (at minimum) to mon-
itor changes in functional reserve. In addition, an assessment
that regularly captures biological, behavioral, and psychosocial
factors associated with physical function, such as the GA, is rec-
ommended for clinical practice to render a more holistic evalua-
tion of care needs. Clinicians, survivors, and caregivers should
be educated on the aging-related consequences of cancer and
treatment. A collaborative care model and an infrastructure to
support communication between multidisciplinary care teams
is needed to monitor changes in health status before the onset
of disability and frailty.

Summary of Think Tank Deliberations

Ideal measures would validly and reliably capture underlying
processes associated with aging, reflect the degree of functional
reserve, and predict aging endpoints ( 142). At this time, no single
existing biomarker or composite measure is sensitive or specific
enough to capture biological or functional age accurately, so a
multilevel approach is needed to measure aging-related conse-
quences of cancer and its treatments ( 43). The Fried Frailty
Phenotype, deficit accumulation/frailty index, and GA differ in
their degree of clinical utility and ability to distinguish levels of
frailty among cancer patients; thus, the most appropriate clinical
measure to implement depends on specific outcomes of interest,
cost, time, and clinical feasibility ( Table 1 ). One important out-
come of the meeting was the recommendation that at least one
functional measure, such as gait speed or grip strength, should
be assessed in clinical studies of cancer survivors. Several prom-
ising biological measures are also worthy of future study, includ-
ing 31Phosphocreatine recovery time ( 69,70,72), p16INK4a
(19,73,116,126), estimators of DNAm age ( 74–76,79,143,144), and
the Pace of Aging ( 136,137). Other composite measures of biologi-
cal age have been put forth in recent years ( 145–151); however,
these measures do not distinguish the ongoing process of aging
from differences in system integrity present from earlier in life.
Additionally, none of the composite measures of biological aging
have been studied or validated in cancer survivors.

Some evidence suggests that cancer and its treatments have
long-term, unintended aging-related consequences. More re-
search is needed to better assess the rate of aging and to under-
stand the relationships between markers of biological age and
functional outcomes in cancer survivors. This report summa-
rized expert-informed deliberations of measures that might be
considered for inclusion in research studies of the aging-related
consequences of cancer and cancer treatment and highlights
gaps in our understanding of the processes that underlie differ-
ential responses to cancer treatment. Addressing these research
gaps will help inform strategies to enhance healthy aging for all
cancer survivors.
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Box 2. Preclinical and clinical research opportunities to expand the evidence base for research studies on the aging-related con-

sequences of cancer and cancer treatment

Opportunities for Preclinical Research

• Conduct animal studies using old and young animal models to determine the effects of established and newer cancer thera-

pies on aging endpoints.
• Support mechanistic studies that may lead to novel translational research and new or modi�ed treatments that reduce tox-

icity and long-term morbidity.
• Support replication studies of animal models to better understand the predictors of functional and cognitive aging processes

in the presence of cancer treatments.
• Examine the rate of aging and its impact on tissue microenvironments, including research on the effects of physical activity

and dietary restriction on aging outcomes.
• Elucidate the role of cancer treatment in damage to the tissue microenvironment and its relationship to cancer recurrence

and drug resistance.
• Develop anticancer agents that attack cancer cells and simultaneously boost the tissue microenvironment to favor the nor-

mal cell phenotype.
• Use preclinical models to identify the mechanisms underlying frailty in cancer patients.

Opportunities for Clinical Research

• Include cancer survivors with heterogeneous chronological and functional ages in randomized controlled trials.
• Develop and validate tools for the identi�cation of late-emerging effects and aging phenotypes.
• Test implementation and dissemination of tools to measure aging-related outcomes in clinical practice and their impact on

health outcomes.
• Support infrastructure to incorporate clinical assessments at baseline and posttreatment to create personalized risk-strati-

�ed care models.
• Design an infrastructure appropriate for a clinical environment that aggregates information derived from a variety of sour-

ces (eg, electronic health records, validated instruments, self-report).
• Develop cancer treatment-related, evidence-based practice guidelines for risk prediction, screening, prevention, diagnostics,

treatment, and follow-up care.
• Design surveillance systems to monitor cancer patients long-term for adverse events due to cancer medications and

therapies.
• Conduct research to understand the relationships between markers of biological age and functional outcomes in cancer survivors.
• Conduct longitudinal epidemiologic studies to better assess the rate of aging, investigate the long-term effects of cancer

treatment and combination therapy in cancer survivors, distinguish the major determinants of progressing to an aging phe-

notype, characterize trajectories of aging, quantify the incidence and severity of aging phenotypes, and identify subgroups

of cancer survivors at risk for an “accelerated aging” phenotype.
• Establish standards and evaluation measures using geriatric assessments and biomarkers for surveillance in younger and

older cancer survivors.
• Examine whether aging-related processes are involved in the risk of second malignancies after chemotherapy.
• Examine the role of composite measures (eg, the Pace of Aging) as early indicators of aging phenotypes.
• Re�ne neurocognitive measures to reduce assessment burden and improve feasibility in clinical and research settings, while

preserving sensitivity to detect small changes in function. Consider using neuroimaging techniques and blood, plasma, or

other �uid biomarkers to elucidate the mechanisms of cancer-related cognitive impairment (CRCI).
• Conduct cross-disciplinary studies both of cancer survivors and noncancer populations with cognitive decline or Alzheimer

disease to understand risks for CRCI and cognitive aging.
• Conduct research on resilience as a key predictor, modi�er, or outcome of aging processes after cancer treatment.
• Examine the impact of personality types (eg, conscientiousness and optimism) on cancer- and treatment-associated aging.
• Develop evidence from interventions about whether increases in system reserve can mitigate aging processes and improve

aging-related functional outcomes.
• Quantify the impact of early intervention (postdiagnosis and treatment) on quality-of-life outcomes in cancer survivors.

Opportunities for Clinical Practice

• Implement evidence-based comprehensive screening and surveillance tools, such as the geriatric assessment, to assess risk

for treatment toxicity and establish baseline measures of—and monitor changes in—function and the biological, behavioral,

and psychosocial contributors to health outcomes over time.
• Consider incorporating a collaborative care model for the surveillance of aging outcomes.
• Consider including specialists with a clinical background in aging or geriatrics within the multidisciplinary care team.
• Improve education related to the aging consequences of cancer and cancer treatment for clinicians, survivors, and

caregivers.
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