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Abstract 

Increasing numbers of people surviving to advanced ages pose serious challenge to 
government pension systems and to the most industrialized societies. In the majority of developed 
countries fertility already reached very low levels and has little chances of radical changes, so 
mortality and mortality at advanced ages in particular is the main driving force behind the future 
population changes. Therefore, accurate estimates of mortality at advanced ages are essential to 
improving forecasts of mortality and the population size of the oldest old age group.  In this article 
we present some new approaches to mortality and population projections at older ages. We apply 
modified method of mortality shifting to population of Sweden and make mortality projections up to 
2070. Specifically, we identify the best time interval for identifying the rate of mortality decline to 
use in mortality extrapolation. In the case of Sweden, the best interval is 1980 through 2008 years 
for both men and women. For men, the rate of mortality decline was almost twice as high as the 
rate for female. Finding the best formula for extrapolating mortality for ages beyond 100-105 years 
is another important issue in mortality projections given increasing longevity in industrialized 
countries. Study of several single-year extinct U.S. birth cohorts found that mortality trajectory at 
advanced ages follows the Gompertz law up to the ages 106 years without significant mortality 
deceleration. These findings are supported by another study of independent data on siblings of 
centenarians drawn from verified and accurate U.S. family histories. Using these two simple 
assumptions (log-linear decline of mortality over time and Gompertz law working at advanced 
ages), we made mortality projections for Swedish males and females for the next 60 years. 
According to these projections, life expectancy at age 25 will increase from 54.07 in 2005 to 62.71 
in 2050 for men and from 58.20 to 63.50 for women. If this tendency of mortality decline continues 
then in 2059 life expectancy at age 25 for men may surpass that of women. These advances in life 
expectancy will not result in population growth and in the absence of migration the „native‟ 
population of Sweden is expected to decline after 2036 (assuming unchanged birth rate).   

 

Introduction 

Population aging is a global phenomenon, which is particularly expressed in industrialized 
countries. The proportion of older people in these countries grows now with accelerated pace 
mainly due to increasing longevity, because fertility there already reached very low levels.  



3 

 

Population aging is expected to continue over the next few decades, eventually leading to the 
global convergence in the proportion of older people. Although fertility decline was the main cause 
of population aging in the past, the process of population aging in contemporary societies is 
determined by declining mortality at older ages. Thus, mortality studies and projections for older 
ages are particularly important for making accurate demographic forecasts of population aging.  

This paper is focused on mortality changes at older ages because these changes are now 
the main driving force behind both increases in life expectancy and population aging. In this article 
we present some new approaches to mortality forecasts and population projections at older ages. 

 

Using parametric models (mortality laws) for mortality projections 

Parametric models of mortality represent a useful tool in demographic and actuarial 
projections of mortality. One of the first and most successful attempts to express the dependency 
between mortality and age mathematically  was that of the English actuary Benjamin Gompertz, 
dating to 1825 (Gompertz 1825): 

 

                                               x = R
0
exp( )x

 

 

where µx is the force of mortality (hazard rate) at age x;  and α and R0 are the parameters of 
the equation.  This formula, which describes the mortality of people older than 20, was called the 
Gompertz law, and its parameters were named the Gompertz parameters.  Subsequently, the 
Gompertz law began to be used widely for describing the mortality of laboratory animals (Gavrilov 
and Gavrilova 1991). 

In his work, Gompertz noted that, in addition to the mortality which grows exponentially with 
age, there can also exist a component of mortality which is independent of  age: "It is possible that 
death may be the consequence of two generally coexisting causes: the one chance, without 
previous disposition to death or deterioration, or increased inability to withstand destruction"   
(Gompertz 1825). However, for the analysis of the life tables which were then available, Gompertz 
considered it possible to restrict himself solely to the exponential component of mortality. Not until  
35 years later,  in 1860, did another actuary William Makeham add the age-independent 
component to the Gompertz formula (Makeham 1860).  This component, usually denoted by the 
letter A, received the name of the Makeham parameter (Gavrilov and Gavrilova 1991).  Thus the 
formula appeared which we now know as the Gompertz-Makeham law: 

 

                                                  x = A R
0
exp( )x + 

 

 

A  is the age-independent component of mortality,  which we called the background 
component of mortality in analogy with background radiation (Gavrilov and Gavrilova 1979, 1991);  
The second term of this equation is the age-dependent component of mortality (Gavrilov and 
Gavrilova 1979), which is called now the senescent component of mortality (Bongaarts 2005).  As 
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can be seen from what has been said, the age-dependent component of mortality is an exponential. 
In the particular case in which the background mortality can be ignored (for example under good 
laboratory conditions or in contemporary industrialized countries), the total force of mortality grows 
exponentially with age, i.e. in accordance with the Gompertz law. 

The Gompertz-Makeham formula describes the life span distributions of a wide variety of  
biological species (drosophila, mosquitoes, flour beetles, mice, rats, horses and mountain sheep), 
including humans (Gavrilov and Gavrilova 1991). There are some reports that the competing 
Weibull formula (power law) fits data better than the Gompertz formula. These reports are usually 
based on analysis of a few life tables for populations of small size (often less than 100 animals). 
Our comparative study of Weibull and Gompertz models using data for 260 human life tables and 
15 life tables for fruit flies (with initial population size of 1000 or more animals) demonstrated that 
on average the Gompertz-Makeham law fits mortality at adult ages better than the Weibull-
Makeham law (Gavrilov and Gavrilova 1991) although in some rare cases Weibull formula shows 
better fit of mortality data. 

Subsequently, there were many attempts to modify the Gompertz law. The most common 
way of modifying the Gompertz function is to use what are called logistic equations. The earliest 
such formula was proposed by Perks and the latest and the most widely used one was proposed by 
Kannisto and is called a Kannisto formula (Kannisto 1994): 

 

                                                             
x =

Bexp( )x

1 Bexp( )x + 
 

 

The formulas listed above are applicable to mortality of adult population (usually above age 
20 years). There were also attempts to describe mortality in the entire age interval, such as 
Heligman-Pollard (Heligman and Pollard 1980) and Siler (Siler 1979) formulas.  

Parametric formulas can be used in population projections by analyzing historical trends of 
their parameters. For example, in 1979,  during an analysis of the historical changes in the mortality 
of the Swedish male population, it was found that the age-dependent component of mortality in the 
Gompertz-Makeham formula demonstrates surprising historical stability despite rapid decline in 
age-independent mortality (Makeham term) (Gavrilov and Gavrilova 1979).  Further more careful  
investigation confirmed the validity of this phenomenon (Gavrilov and Gavrilova 1991; Gavrilov, 
Gavrilova and Nosov 1983) and the study of historical time series of mortality for 17 countries 
permitted the conclusion that it was quite general in character (Gavrilov and Gavrilova 1991). 
Figure 1 shows changes in total, background and senescent mortality for Swedish males.  It can  
be seen that the background component of mortality is the only mortality component, which has 
significantly changed over the studied period (1900-1970). The senescent mortality (and two 
Gompertz parameters), turn out to be practically unchanged, despite the sharp fall in total mortality 
in the 20th century. We observe that the substantial decline in mortality rates in Sweden at the 
beginning of the 20th century can be explained by a decrease in the Makeham component while 
the Gompertz component remained virtually constant during the same period. In the 1960s, as the 
Makeham component had almost reached zero, it became foreseeable that the rapid decline in 
mortality rates would come to an end. And this is what happened in fact in the 1960s (Gavrilov et al. 
1983). Thus, based on the observation of the mortality tables for the first half of the 20th century, it 
was possible to predict a "biological limit" to the force of mortality. For example, at the beginning of 
the 20th century, total mortality was substantially higher in Norway than in Denmark. However, 
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based on the observation that the Gompertz component was considerably lower in Norway, we 
were able to predict a reversal in the trend as the Makeham component declines. This is exactly 
what happened (Gavrilov and Gavrilova 1991). Similarly, in Italy, the mortality rates of men and 
women were virtually identical at the beginning of the 20th century but the biological limit for women 
was lower due to the lower corresponding Gompertz component. Based on data from the beginning 
of the 20th century, we were able to predict that eventually, women's mortality would become lower 
than male mortality (Gavrilov and Gavrilova 1991). However after the 1960s, new unexpected 
trends in mortality have started. These trends were not well visible at the time of this study, 
although some indications of further mortality decline have been already noticed (Gavrilov and 
Gavrilova 1991; Gavrilov and Nosov 1985). 

Recently Bongaarts developed further the method based on studying historical trends of 
Gompertz-Makeham parameters suggesting use of logistic formula for mortality forecasting 
(Bongaarts 2005). This modification was reasonable because mortality rates for period life tables in 
Human Mortality Database used in his study were fitted by logistic formula after age of 85 years 
(Wilmoth et al. 2007). His study analyzed historical trends in the interval 1950-2000 years for 14 
countries and confirmed decline of the background mortality and stability of the slope parameter in 
the Gompertz term found in the previous studies. Due to the limited number of life tables (no life 
tables before 1950 were used) this study could not demonstrate the full scale of decline in 
background mortality during the first half of the 20th century.  However this study revealed another 
interesting regularity that could not be fully analyzed in the past: decline in the pre-exponential 
multiplier of senescent mortality. Decline of this parameter (called the level parameter by 
Bongaarts) in conjunction with stability of the slope parameter in the Gompertz term means that the 
senescent component of mortality in developed countries undergoes parallel shift in semi-log 
coordinates over time. This pattern of mortality change was called a shifting logistic model 
(Bongaarts 2005).  Based on this mortality pattern, Bongaarts suggested a new approach to 
mortality projections. This approach is based on estimating parameters of the logistic formula for a 
number of years and extrapolating the values of three parameters (background mortality and two 
parameters of senescent mortality) to the future (Bongaarts 2005, 2009).  

Figure 2 illustrates the two phases of mortality decline in the 20th century. When we analyze 
mortality data on a larger time scale, we observe a decline of mortality in all age groups between 
1925 and 1955 except for the elderly where death rates remained relatively constant.  Note that 
mortality trajectories for 1925 and 1955 are close to each other at older ages, which corresponds to 
the stability of the senescent mortality during the first half of the 20th century. After the 1950s, the 
parallel shift of mortality has been observed, which corresponds to the model proposed by 
Bongaarts (for example, compare mortality trajectories for 1955 and 2005).  

It should be noted that in addition to the approach based on the background and senescent 
mortality there is another way of mortality partitioning. In 1952, Jean Bourgeois-Pichat attempted to 
predict population mortality using the idea of endogenous and exogenous causes of death 
(Bourgeois-Pichat 1952).  In the exogenous causes of death he included infectious and parasitic 
diseases, respiratory diseases, accidents, poisonings, and violence. The endogenous causes of 
death included malignant neoplasms, circulatory diseases, and  the remaining causes of death 
(Bourgeois-Pichat 1952).  In Bourgeois-Pichat's opinion, the evolution of human mortality can be 
likened "to the erosion of soil composed of two kinds of rock:  soft rock and hard rock." At first, the 
"soft rock" is quickly eroded (exogenous causes of death), then the "hard rock" slowly erodes 
(endogenous causes of death).  On the basis of these ideas, it was predicted that medical 
advances in eliminating the exogenous causes of death would lead to the endogenous causes of 
death coming to the fore.  Thus, Bourgeois-Pichat formulated "the concept of a temporary limit on 
mortality decline", and even calculated the level of this "temporary limit" for each age, calling it "the  
biological limit of mortality decline" (Bourgeois-Pichat 1952, 1979). Later Carnes and Olshansky 
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developed this approach further suggesting so-called biologically motivated partitioning of mortality 
into extrinsic and intrinsic mortality based on cause-of-death information (Carnes and Olshansky 
1997).  Information on causes of death is used sometimes in actuarial practice for making mortality 
projections although these projections usually underestimate future mortality decline. Mortality 
partitioning proved to be a useful tool for mortality projections in the past when background 
mortality (analog of extrinsic mortality) was high, but this approach is less useful now when 
background mortality is close to zero and does not change significantly over time.  In addition to 
that, in some cases, it is simply impossible to establish whether death is exogenous or 
endogenous.  For example, a patient may be suffering from several diseases, none of which alone 
would lead to death, but which are lethal in combination. So this approach has a limited applicability 
in demographic practice now.  

Despite the usefulness of parametric approach to mortality projections it has serious 
limitations. The main limitation is a dependence on the particular formula, which makes this 
approach too rigid for responding to possible changes in mortality trends and fluctuations.  In the 
next section we consider some methods of mortality projections based on non-parametric 
approaches. 

 

Nonparametric approach to mortality projections 

The Lee-Carter method is now one of the most widely used methods of mortality projections 
in demography and actuarial science (Lee and Miller 2001; Lee and Carter 1992). Its success is 
stemmed from the shifting model of mortality decline observed for industrialized countries during 
the last 30-50 years. The Lee-Carter method is applied to the logarithm of mortality and is based on 
the following formula for hazard rate (or central death rate) (Lee 2000): 

 

ln( )x,t = a( )x b(x)k(t) + 
 

where a(x), b(x) and k(t) are parameters to be estimated. This model does not produce a 
unique solution and Lee and Carter suggested applying the following constraints (Lee 2000; Lee 
and Carter 1992):  

t

k( )t = 0;
x

b( )x = 1

 

The first constraint implies that the parameter a(x) is an empirical average of the logarithm 
of mortality at age x over time.  In the first stage of the Lee-Carter method, coefficients a(x) and b(x) 
are estimated. In the second stage, the empirical values of k(t) coefficients are estimated using the 
following formula (Lee 2000): 

D
t

= exp( )a
x

b
x
k

t
 + N

x,t  

where Dt is total number of deaths in year t, and Nxt is the population aged x in year t.  

The empirical time series of k coefficients can be extrapolated from the base period to the 
future which is essentially a linear extrapolation.  
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Note that the Lee-Carter method is modeling logarithms rather than absolute values of 
mortality and hence is based on multiplicative model of mortality change over time (rather than 
additive one as in the case of Gompertz-Makeham model).  On the other hand, the Lee-Carter 
model is not based on any particular parametric formula and allows researchers to make a compact 
description of a large set of mortality data without excessive loss of information. In contrast to 
aggregated indicators such as life expectancy, the knowledge of the Lee-Carter model parameters 
allows researchers to reconstruct values of age-specific mortality rates and their temporal evolution 
with reasonable accuracy.  One limitation of this method is related to the assumption that historical 
evolution of mortality at all age groups is driven by one factor only (parameter b) (Lee 2000). 
However a factor analysis of mortality evolution (see Annex for details) found that this approach 
turns out to be overly simplistic (Gavrilov and Gavrilova 1991; Gavrilov and Nosov 1985). For 
example, factor analysis of mortality dynamics over the period of 1900-2007 in developed countries 
found that at least two time-dependent factors are responsible for observed decline of mortality 
(younger age groups have a different factor of mortality decline compared to older groups). One-
factor model could be applicable to earlier historical periods only (before 1950s), when a decline in 
mortality rates was driven mainly by a decrease of the background mortality (the Makeham 
parameter of the Gompertz-Makeham law)  (Gavrilov and Gavrilova 1991; Gavrilov et al. 1983). It is 
obvious that the Lee-Carter model is not well applicable to mortality modeling during the period 
1900-1950 because of additive rather than multiplicative model of mortality decline during this time.  

In order to overcome limitation of one-factor model of mortality and to determine the true 
number of factors underlying mortality changes over time, we conducted a factor analysis of 
mortality for Swedish data over the period of 1900-2008 (see Annex 1 for more detail). We used so-
called P-technique of factor analysis when the analysis occurs across different time points or 
observations (values of hazard rates at different years) for ages 25 through 85 (Uberla 1977).  We 
applied factor analysis procedure with promax rotation method using the Stata, release 11 
statistical package. Data on men and women were analyzed separately. We identified two factors 
capable of explaining almost 98% of the variance in the temporal changes of hazard rates. Thus, 
for more accurate description of mortality evolution, the following model would be preferable: 

( )x t, = a
0
( )x a

1
( )x F

1
( )t + a

2
( )x F

2
( )t + 

 

where x is age, t is time, α(x), α1(x), α2(x) are three sets of parameters depending on age 
only, while F1(t) and F2(t) are two sets of parameters depending on time only (sets of coefficients 
determined by factor analysis models). 

By studying the variation of these factors over time, we noted that the first factor - 
comparable to the Makeham component and observed in the "young ages" population (see Table 3 
in the Annex) - declined from the beginning of the century. The second factor - comparable to the 
senescent mortality and chiefly concerning the "old ages" population - remained remarkably stable 
over a period of 1900-1950 (see Figurers 3 and 4). Without more recent data, we might predict 
continued historical stability of this factor. However, a radical change has occurred after the 1950s 
and mortality has begun to decline among older people while the mortality of the younger age 
groups has already reached very low levels close to zero. Thus, factor analysis of the time series of 
mortality confirms the preferential reduction in the mortality of old-aged people in the recent years.  
Also note that for males, the senescent factor started its rapid decline significantly later compared 
to females.  

Observations made before 1950 enrich the historical data as a whole but they are liable to 
distort the results of mortality projections. However, for the future forecasts it is better to use more 
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recent data, which take account of the change in the patterns of mortality decline. What conclusions 
may be drawn at this point? In the past, it was possible to argue that there was a biological limit 
underlying the observed mortality rate. We have observed, however, that these limits can be 
pushed back thanks to technological or medical progress. Although it is equally impossible to 
conclude that the mortality force is tending toward zero, the short-term trend is clearly oriented 
downwards. 

The approach based on the factor analysis has several advantages. First it is able to 
determine the number of factors affecting mortality changes over time. Second, this approach 
allows researchers to determine the time interval, in which underlying factors remain stable or 
undergo rapid changes. For example, Figures 3 and 4 clearly demonstrate that the second factor 
was relatively stable in the past but now is rapidly declining for both men and women. However, this 
rapid decline started almost 30 years later in men compared to women.  Most methods of mortality 
projections are not able to identify the best base period of time for mortality changes that should be 
extrapolated in the future. For example, the Lee-Carter method suggests using the longest possible 
interval. It is clear that such approach will not bring the most accurate mortality forecast. Using the 
results of factor analysis we may conclude that 1980 is the best starting year for mortality 
projections and 1980-2008 is a useful base period for mortality extrapolation. After 1980, the 
senescent factor demonstrates a stable linear decline and it is reasonable to suggest that this 
decline will continue into the foreseeable future.   

Taking into account the shifting model of mortality change it is reasonable to conclude that 
mortality after 1980 can be modeled by the following log-linear model with similar slope for all adult 
age groups:  

ln( )x, t = a( )x kt
 

Figure 5 illustrates the validity of suggested model for Swedish men. Note that the logarithm 
of mortality declines linearly in all observed age groups with the same linear slope. Similar 
regularity is observed for Swedish women.  

We suggest here to use the shifting model of mortality with the slope parameter based on 
mortality rate of change after 1980. So far we analyzed mortality in the age interval 25-85 years. 
However, there is a question related to the mortality pattern at advanced ages.  Bongaarts used 
logistic formula for mortality modeling and this formula is now the most popular way of mortality 
modeling at advanced ages.  Should we use this formula for mortality projections at advanced 
ages? We attempt to answer this question in the next section.  

 

Mortality trajectories at very advanced ages 

It is now considered as an established fact that mortality at advanced ages has a tendency 
to deviate from the Gompertz law, so that the logistic model often is used to fit human mortality 
(Horiuchi and Wilmoth 1998).  The estimates of hazard rate at extreme ages are difficult to obtain 
because of small numbers of survivors to these ages in most countries.  Data for extremely long-
lived individuals are scarce and subjected to age exaggeration.  Traditional demographic estimates 
of mortality based on period data encounter well known denominator problem.  More accurate 
estimates are obtained using the method of extinct generations (Vincent 1951).  In order to obtain 
good quality estimates of mortality at advanced ages researches are forced to pool data for several 
calendar periods.  Single-year life tables for many countries have very small numbers of survivors 
to age 100 that makes estimates of mortality at advanced ages unreliable. The aggregation of 
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deaths for several calendar periods however creates a heterogeneous mixture of cases from 
different birth cohorts. Mortality deceleration observed in these data might be an artifact of data 
heterogeneity.  In addition to that, many assumptions about distribution of deaths in the age/time 
interval used for mortality estimation are not valid at extreme old ages when mortality is particularly 
high. 

Mortality deceleration and subsequent mortality plateau (logistic formula) is often presented 
as universal mortality law.  Indeed, the existence of mortality plateaus is well established for a 
number of lower organisms, mostly insects, including fruit flies , medflies and house flies (Carey et 
al. 1992; Curtsinger et al. 1992; Curtsinger, Gavrilova and Gavrilov 2006; Gavrilov and Gavrilova 
2006; Vaupel et al. 1998). In the case of mammals, however, data are much more controversial. 
Although Lindop and Sacher reported short-term periods of mortality deceleration in mice at 
advanced ages (Lindop 1961; Sacher 1966) Austad later argued that rodents do not demonstrate 
mortality deceleration even in the case of large samples (Austad 2001). Study of baboons found no 
mortality deceleration at advanced ages (Bronikowski et al. 2002). Recent study of mortality in 
primates also failed to find mortality deceleration at older ages (Bronikowski et al. 2011).  In the 
case of humans, this problem is not yet resolved, because of scarceness of data and/or their low 
reliability. Thus, more studies on larger human birth cohorts are required to establish with certainty 
the true mortality trajectory at advanced ages. 

We have carried out a study based on the analyses of data taken from the U.S. Social Security 
Administration Death Master File (SSA DMF). Social Security Administration Death Master File 
(DMF) is a publicly available data source that allows a search for deceased individuals in the United 
States using various search criteria: birth date, death date, first and last names, social security 
number, place of last residence, etc. This resource covers deaths that occurred in the period 1937-
2010 and captures about 95% of deaths recorded by the National Death Index (Sesso, 
Paffenbarger and Lee 2000).  According to other estimates, DMF covers about 92-96 percent of 
deaths for persons older than 65 years (Hill, Rosenwaike, 2001). 

Social Security Administration Death Master File (DMF) was used in our study of age-related 
mortality dynamics after ages 88 years.  The advantage of this data source is that some already 
extinct birth cohorts covered by DMF could be studied by the method of extinct generations 
(Kannisto 1988, 1994; Vincent 1951). Information available in DMF includes: names of the 
deceased, his/her social security number, date, month, year of birth, month and year of death, state 
of SSN issuance, place of the last residence. In this study information from the DMF was collected 
for individuals who lived 88 years and over and died before 2011.  DMF database is unique 
because it represents mortality experience for very large birth cohorts of the oldest-old persons.  In 
this study mortality measurements were made for cohorts, which are more homogeneous in respect 
to the year of birth and historical life course experiences. Availability of month of birth and month of 
death information provides a unique opportunity to obtain hazard rate estimates for every month of 
age, which is important given extremely high mortality after age 100 years. Despite certain 
limitations, this data source allows researchers to obtain detailed estimates of mortality at advanced 
ages.  We already used this data resource for centenarians‟ age validation in the study of 
centenarian family histories (Gavrilova and Gavrilov 2007).  This data resource is also useful in 
mortality estimates for several extinct or almost extinct birth cohorts in the United States. 

We obtained data for persons who died before 2011 and were born in 1875-1895.  Assuming 
that the number of living persons belonging to these birth cohorts in 2010 is close to zero, it is 
possible to construct a cohort life table using the method of extinct generations, which is considered 
to be the most accurate method to study old-age mortality (Kannisto 1994).  In the first stage of our 
analyses we calculated an individual life span in completed months:  
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Lifespan in months = (death year – birth year) x 12 + death month – birth month 

Having this information it is possible to estimate hazard rates at each month of age by standard 
methods of survival analysis.  All calculations were done using the Stata statistical software, 
release 11 (StataCorp 2009). This software calculates nonparametric estimates of major survival 
functions including the Nelson-Aalen estimator of hazard rate (force of mortality).  In this study, 
survival times were measured in months, so the estimates of hazard rates initially had a dimension 
of month-1.  For the purpose of comparability with other published studies, which typically use the 
year-1 time scale, we transformed the monthly hazard rates to the more conventional units of year-1, 
by multiplying these estimates by a factor of 12 (one month in the denominator of hazard rate 
formula is equal to 1/12 year).  It should be noted that hazard rate, in contrast to probability of 
death, can be greater than 1, and therefore its logarithm can be greater than 0 (and we indeed 
observed these values at extreme old ages in some cases). In this paper we focus our analyses on 
1886-1895 birth cohorts, because we found that data quality for earlier cohorts is not particularly 
good. 

Results of the hazard rate estimates for 1891 birth cohort are presented in Figure 6. Note that 
mortality trajectory in semi-log scale is linear up to the age 105-106 years. After age 106 years data 
points show very high variation suggesting declining data quality (possible age misreporting). One 
approach to evaluate data quality at advanced ages is to calculate female to male ratio at advanced 
ages. Taking into account that female mortality is always lower than male mortality it is reasonable 
to expect that the female-to-male ratio should continuously increase with age. On the other hand, 
old men have a tendency for age exaggeration and in populations with poor age registration there 
is a relative excess of men at very advanced ages (Caselli et al. 2006; Willcox et al. 2008).  We 
calculated female-to-male ratio after age 95 years for 1887-1892 U.S. birth cohorts from the SSA 
DMF. Figure 7 demonstrates the age dependency of this ratio for pooled sample of 1887-1892 birth 
cohorts (these cohorts have similar levels of mortality). Note that the female to male ratio is growing 
steadily with age up to ages 106-107 years. After this age the female-to-male ratio starts to 
decrease indicating declining quality of age reporting. Thus, the estimates of hazard rates obtained 
from the SSA DMF are of acceptable quality up to the age of 106 years. For this reason we used 
age interval 88-106 years for mortality modeling.   

Next step of our study was to compare two competing models of mortality at advanced ages 
- the Gompertz and the logistic models - using data of reasonably good quality. Study of data 
quality of at advanced ages described above suggests that age reporting among the oldest-old in 
the United States is good until the age of 106 years. It means that comparing mortality models 
beyond this age is not feasible because of poor quality of mortality data. It was shown that age 
reporting for persons applied to Social Security Numbers in the Southern states of the U.S. is 
significantly less accurate compared to persons applied in the Northern states regardless of race. 
(Rosenwaike and Stone 2003). For this reason, we used a subsample of deaths for persons 
applied to SSNs in the „Northern‟ states and born in 1886-1895, because these data have 
reasonably good quality.  We applied the Gompertz and logistic (Kannisto) models (Thatcher, 
Kannisto and Vaupel 1998) to mortality modeling in the age interval 88-106 years using nonlinear 
regression method for parameter estimation. Calculations were performed using Stata statistical 
software, release 11 (StataCorp 2009). Bayesian information criterion (BIC) was used as a 
goodness-of-fit measure. Table 1 shows values of BIC for both Gompertz and logistic model for ten 
studied birth cohorts. Note that in 8 out of 10 cases (studied birth cohorts), the Gompertz model 
demonstrates better fit (lower BIC) than the logistic model for age interval 88-106 years.  

At this moment, we cannot make a conclusion that Gompertz model fits mortality data better 
than the logistic model beyond the age of 106 years, because of low quality of age reporting at very 
old ages. At the same time, the data indicate that the Gompertz model fits mortality data well until 
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the age 106 years. Taking into account that survival beyond age 106 years is rather rare event, it 
would be reasonable to suggest the use of Gompertz model rather than logistic model for closing 
cohort life tables in demographic practice. In this case, mortality modeling could be done first for 
hazard rate (mortality force) function and then all life table functions (including probability of death, 
qx) could be derived on the basis of modeled values of hazard rate.  Thus the Gompertz model fits 
mortality reasonably well up to the age of 106 years. Comparison of DMF data with published 1900 
U.S. actuarial cohort life table (Bell, Wade and Goss 1992) showed that DMF mortality estimates 
are similar to mortality estimates obtained from the 1900 cohort life table. The maximum likelihood 
estimator of the Gompertz slope parameter for mortality in 1894 cohort measured in the interval 88-
106 years for DMF data (0.0786 year-1, 95%CI: 0.0786-0.0787) does not differ from the slope 
parameter calculated over the age interval 40-104 years in 1900 life table: 0.0785 year-1, 95%CI: 
0.0772-0.0797.  

Our study of late-life mortality based on the data from the U.S. SSA Death Master File 
suggests that for rather homogeneous single-year birth cohorts mortality at advance ages does not 
decelerate up to very advanced ages.  In order to make an independent check of our findings we 
used another dataset. We have developed and analyzed a new computerized database on 1,711 
validated centenarians born in the United States in 1880-1895, as well as their 13,392 shorter-lived 
siblings. These data were collected from the Rootsweb publicly available database using web-
automation technique for centenarians having information on lifespan of their parents and the 
majority of their siblings. Additional validation of centenarian age through the SSA DMF and early 
censuses ensured high quality of life histories and information on siblings in particular. For the 
purpose of mortality study, we used only those siblings who were born before 1880, i.e. not in the 
same time window as the selected centenarians. As a result, 1,895 siblings born in 1856-1879 were 
identified and 1681 siblings survived to age 60 were used for mortality analysis.  Figure 8 shows 
the hazard rate trajectory (in semi-log scale) for this group of siblings using 6-month age intervals 
for hazard rate estimation by actuarial method (Kimball 1960). Note that mortality trajectory after 
age 60 years does not show a tendency for deceleration despite rather heterogeneous nature of 
the sample (mixture of different birth cohorts, men and women). This example suggests that 
mortality deceleration is not a universal phenomenon at advanced ages, but rather a result of age 
misreporting, data heterogeneity and problems with proper estimation of hazard rates.  

Few people survive to advanced ages and, in standard mortality tables, it is frequently 
necessary to compile data over an entire decade to obtain a sufficiently large sample. Our work 
shows that the observed deceleration in measured mortality rates could result in part from the 
heterogeneity of the data. There consequently remains a great deal of research to carry out if we 
are to improve our understanding of mortality at advanced ages. The second problem we examined 
is frequently overlooked by demographers and actuaries: the problem of correct estimation of the 
instantaneous mortality rate (hazard rate). At the most advanced ages, the rates of death are so 
high that it is impossible to assume that the number of dying is distributed uniformly within the 
studied one-year intervals. As a result, the estimates of mortality rates (or central death rates) are 
biased downwards at advanced ages. And finally, the third problem is related to the fact that elderly 
people tend to round their ages up, thereby exaggerating their true age. In the United States, this 
may have made impaired the accuracy of mortality rate estimates in the past. 

 

 

Making mortality forecasts using the information from the observed phenomena 
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In the previous sections we already demonstrated that the classic Gompertz model can be 
used for mortality modeling up to very old ages. Extending this model to age 106 years is sufficient 
for most countries to close life table because only few individuals survive to these ages even in the 
countries with low mortality. The factor analysis of mortality changes indicates that age-dependent 
(senescent) mortality continues to decline and this decline does not demonstrate any indications of 
slowing down. This observation means that the traditional Lee-Carter approach can be used for 
mortality forecasting.  The study of mortality changes using factor analysis demonstrates that 
mortality trends after 1980 can be continued beyond 2011 for both men and women. As can be 
seen from Figure 5, logarithms of mortality after 1980 for Swedish men show practically linear 
decline over time with similar slope for the studied ages. We can use this property to model 
mortality decline after 2010 assuming the same rate of mortality changes (in a log scale) for 
different ages. Changes of mortality after 1980 for Swedish females reveals similar phenomenon 
although women demonstrate slower rate of mortality decline.  

Based on the observed mortality trends estimated that mortality of Swedish males declines 
by 2 percent per year on average while mortality of Swedish female declines by 1 percent per year. 
We assumed that these rates of mortality decline for each gender remain unchanged over time and 
are the same for all age groups. These gender differences in the rate of mortality decline over the 
last three decades are apparently responsible for the decreasing gender gap in life expectancy 
observed recently in the majority of developed countries (Glei and Horiuchi 2007).  

Additionally, we assume that mortality continues to follow the Gompertz law at advanced 
ages as shown in the previous section. At the same time, we do not attempt to close life table at 
any predetermined age (say, 110 years) as it is often made in demographic forecasts. In our 
projections, the number of the last death is shifting to higher ages as long as mortality continues to 
decline. Using all the listed assumptions we conducted mortality projections for the next 50-60 
years.   

We used traditional cohort-component method (Preston, Heuveline and Guillot 2001) to 
make population projections for Sweden until 2060 assuming unchanged age-specific fertility 
schedule and no migration (to evaluate changes in mortality on population growth and aging).  For 
our life expectancy and population projections, we used official 2005 Swedish data on population 
age-sex distribution, 2005 age-specific fertility rates and 2005 life table. Our projected values of life 
expectancy using this approach are more optimistic than forecasts of the majority of demographers 
made so far (Waldron 2005). According to our forecasts, life expectancy at birth may reach 90 
years in 2070. Another difference between our results and the existing projections is the declining 
gender gap in life expectancy. It is projected that in 2059 life expectancy of men may outrun that of 
women if current trends in mortality continue to the future. Figure 9 shows the projected trends in 
life expectancy at age 25 for Swedish men and women together with the observed values of life 
expectancy taken from the Human Mortality Database. Note that our method shows good 
correspondence with real data for male mortality while for females it overestimates the observed life 
expectancy. Overestimation of life expectancy for women suggests that the selected pace of 
mortality decline (1 percent per year) is slower for age groups not considered in our analyses 
(probably age groups over 90).  Although we made mortality projections up to year 2070, it is more 
reasonable to suggest that the observed trend in mortality decline will continue for the next decade 
with possible uncertain changes after 2020. In this case, the projected life expectancy at birth in 
2020 will be 81.53 years for men and 85.16 years for women with possibility of lower value of life 
expectancy for women.  Thus, gender gap in life expectancy will decrease from 4 years in 2006 to 
3.5 years in 2020.  

These changes in life expectancy will have a profound effect on population aging. 
Increasing longevity accelerates the pace of population aging. Figure 10 shows the growth of the 
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proportion of older persons aged 65 and older in the Swedish population. Note that in the nearest 
future Sweden will experience very rapid population aging, so that the projected number of persons 
aged 65 and older in 2030 will reach 25% for men and 28% for women (currently 17 and 21 
percent). At the same time, the observed gender differences in the degree of population aging will 
become significantly smaller by 2055.  

 

Conclusions 

We demonstrated that the use of factor analysis and simple assumptions about mortality 
changes over age and time allowed us to provide nontrivial but probably quite realistic mortality 
forecasts (at least for the nearest future). It is obvious that the proposed approach to mortality 
forecasting should be country-specific, because each country may demonstrate its own pattern and 
factor structure of mortality decline over time. However, our preliminary analyses show that the two-
factor pattern of mortality decline is observed for the majority of industrialized countries. This study 
assumes that no changes in mortality patterns are expected in the future. This is most likely an 
overly simplistic view. Old-age mortality may be affected by different tendencies in the future. On 
the one hand, an anticipated longevity revolution and new anti-aging technologies are able to slow 
down the aging process resulting in significant decline of mortality at older ages (Illes, de Grey and 
Rae 2007). On the other hand, epidemics of obesity and diabetes in developed countries may slow 
down future mortality decline (Olshansky et al. 2005). These multidirectional trends will shape the 
pattern of mortality changes in the coming decades and affect population aging in industrialized 
countries. One important conclusion comes from the mortality projections presented here: these 
profound future declines of mortality will not result in overpopulation. Without migration and fertility 
changes, the „native‟ population of Sweden will undergo depopulation after 2025. Moreover, it was 
shown that population changes are surprisingly slow in their response to a dramatic life extension. 
For example, we applied the cohort-component method of population projections to 2005 Swedish 
population for several scenarios of life extension and a fertility schedule observed in 2005. Even for 
very long 100-year projection horizon, with the most radical life extension scenario (assuming no 
senescence after age 60), the total population increases by 22% only (Gavrilov and Gavrilova 
2010).  Thus, the future life extension will not significantly increase the total population number 
although it will significantly accelerate the future population aging.  
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ANNEX 1 

 

Application of factor analysis to mortality changes over time. 

Factor analysis is a useful statistical method for data compression. Factor analysis 
originated with the work of Spearman and finds a small number of common latent variables 
(factors) that linearly reconstruct a larger number of original variables (Kerlinger 1986; Stata Corp. 
2009). This approach may be useful for reducing array of mortality rates for a large number of age 
groups. In this case, the standardized values of mortality rate (or hazard rate) at age x and time t 
can be presented as follows (Stata Corp. 2009): 

 

( )x t, = a
1
( )x F

1
( )t a

2
( )x F

2
( )t + ... + a q ( )x F q ( )t + e( )x t,  + 

 

where ak(x) is the set of linear coefficients called factor loadings, Fk(t) is the kth common 
factor for observation at time t and e(k,t) is similar to a residual error term. Such model has an 
infinite number of solutions and various constraints are introduced to make this model determinate. 
To produce results in a form that is easier to interpret it is necessary to rotate factor matrices 
(Kerlinger 1986).  A rotation, which requires the factors to remain uncorrelated is an orthogonal 
rotation, while others are oblique rotations (Stata Corp. 2009). In our analyses we applied oblique 
promax rotation method since it does not impose additional constraints of orthogonality on factors.   

The initial data set for factor analysis of mortality in our study is represented by a set of 
Swedish period life tables taken from the Human Mortality Database (Human Mortality Database 
2011). Data were analyzed separately for men and women. Hazard rates for ages 25-85 years 
were calculated on the basis of age-specific survival numbers (lx) using Sacher formula (Sacher 
1956). Factor analysis was applied to an array of age-specific values of hazard rates for years from 
1900 to 2008. We applied so-called p-technique of factors analysis where values of hazard rates at 
different points of time were considered as observations while hazard rate values at different ages 
were considered as variables. Table 2 shows eigenvalues and percent of explained mortality 
variation for the top five factors.  

It is a common practice in statistics to leave factors with eigenvalues greater than one for 
further analyses. Note that the first two factors explain more than 97 percent of historical variation 
in mortality. Table 3 shows values of rotated factor loadings (for hazard rates at selected ages) for 
the first two factors in the case of Swedish women. It is clear from the Table 3 that the first factor is 
a “young-age” factor because of very high factor loadings for mortality rates at ages 25-45 years. 
On the other hand, the second factor can be called an “old-age” factor because of high factor 
loadings for mortality rates at ages 65-85 years. As follows from Figure 4, the first factor 
(corresponding to background mortality) demonstrated rapid decline during the period 1900-1950. 
Its effect can be illustrated by Figure 2 (mortality curves for 1925 and 1955). Note that the main 
changes from declining background mortality are observed at younger ages while mortality at older 
ages remains relatively stable. Decline in the second factor happened after the 1970s (see Figure 
4) and the effect of this decline on mortality is clear when mortality data for 1955 and 2005 are 
compared. Taking into account that Figure 2 show mortality trajectories in semilog scale it is 
obvious that absolute changes in mortality during 1955-2005 period were the highest at older ages.  
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Tables: 

 

Table 1. Comparison of goodness-of-fit (Bayesian Information Criterion, BIC) for 
Gompertz and logistic models of mortality †.  

 

Birth cohort Cohort size 
at age 88 years, 
persons 

Bayesian Information Criterion 
(BIC) 

Gompertz 
model†† 

Logistic 
model 

1886 111,657 -594776.2  -588049.5 

1887 114,469 -625303.0 -618721.4 

1888 128,768 -709620.7  -712575.5 

1889 131,778 -710871.1 -715356.6 

1890 135,393 -724731.0 -722939.6 

1891 143,138 -767138.3 -739727.6 

1892 152,058 -831555.3 -810951.8 

1893 156,189 -890022.6 -862135.9 

1894 160,835 -946219.0 -905787.1 

1895 165,294 -921650.3 -863246.6 

†. Estimates were made in the age interval 88-106 years for ten single-year U.S. birth cohorts and data 

of enhanced accuracy for individuals applied to SSNs in the Northern states (see explanation in the text). 

†† Cases when the Gompertz model fits data better than the logistic model are highlighted in bold. 
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Table 2. Results of applying factor analysis† to adult mortality data of Swedish men and 
women, 1900-2008. 

Factor Eigenvalue Proportion of variance 
explained 

Cumulative proportion 
of variance explained 

Men    

Factor 1 53.424 0.8766 0.8766 

Factor 2 5.888 0.0966 0.9732 

Factor 3 0.671 0.0110 0.9842 

Factor 4 0.229 0.0038 0.9880 

Factor 5 0.079 0.0013 0.9893 

Women    

Factor 1 55.356 0.9078 0.9078 

Factor 2 4.813 0.0789 0.9867 

Factor 3 0.319 0.0052 0.9919 

Factor 4 0.119 0.0020 0.9939 

Factor 5 0.035 0.0006 0.9944 

† Variables included hazard rate values for ages 25-85 years; factor analysis used promax 
rotation. 

Table 3. Rotated factor loadings (for hazard rates at selected ages) for the first two factors 
after applying factor analysis to historical mortality changes of Swedish women. 

Mortality rate at given age, 
years  

Factor loadings for Factor 1 Factor loadings for Factor 2 

25 1.0005 -0.0145 

35 0.9546 0.0576 

45 0.7706 0.2863 

55 0.5806 0.4941 

65 0.2856 0.7698 

75 0.0716 0.9439 

85 -0.0080 0.9938 
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Figure 1. Historical changes of age-independent (background) and age-dependent 
(senescent) mortality (per 1000) for 40-years old Swedish males. Source: Gavrilov et al., 1983. 

1 – total (observed) mortality at age 40 based on official Swedish life tables 

2 – background mortality component calculated on the basis of Gompertz-Makeham formula 

3 – senescent mortality component at age 40 calculated on the basis of Gompertz-
Makeham formula 
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Figure 2. Changing patterns of mortality decline for Swedish females.  
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Figure 3. Time dependence of factor scores for “young-age” and “old-age” factors for 
Swedish males.  
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Figure 4. Time dependence of factor scores for “young-age” and “old-age” factors for 
Swedish females.  
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Figure 5. Linear changes of logarithm of hazard rate at different ages after 1980 for Swedish 
men.  
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Figure 6. Age-specific hazard rates (log scale) for U.S. population born in 1891. Data from the 

Social Security Administration Death Master File. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Observed female to male ratio at advanced ages for combined 1887-1892 birth cohort. If 

data are of good quality then this ratio should grow with age 

 

 



23 

 

 

 

 

Figure 8. Age-specific hazard rate for 1681 siblings of centenarians born before 1880 and 
lived 60 years and more. Hazard rate was estimated for 6-month age intervals.  
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Figure 9. Projected trends of adult life expectancy (at 25 years) for Swedish men and 
women.  
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Figure 10. Projected changes in the proportion of older persons in Swedish population.  
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