A New Theory on Aging, Living Long, and Dying

Body System Redundancies and “the thousand natural shocks that flesh is heir to” are key to why we age and when we die

This is a lightly edited press release; original is at <http://www.src.uchicago.edu/~gavr1/press_release.html>.

Our bodies’ backup systems don’t prevent aging, they make it more certain. This is one proposition of a new “reliability theory of aging and longevity” by two researchers at the National Opinion Research Center at the University of Chicago. Authors Leonid Gavrilov and Natalia Gavrilova, in their paper, “The Reliability Theory of Aging and Longevity,” published in the Journal of Theoretical Biology (213, 527-545), have offered a comprehensive, groundbreaking theory to understand why people (and other biological species) deteriorate and die more often with age. Interestingly, the relative differences in mortality rates across nations and gender decrease with age. That is, although people living in the U.S. have longer life spans on average than people living in countries with poor health and high mortality, those who achieve the oldest-old age in those countries die at rates relatively similar to the oldest-old in the U.S.

Humans are built from the ground up. We start off with a few cells that differentiate and multiply to form the systems that keep us operating. Even at birth, the cells that make up our systems are full of faults and defective elements that would kill primitive organisms that lack the redundancies that are built into us.” It’s as if we were born in irreplaceable elements. “The phenomena of mortality increase with age and the subsequent mortality leveling-off are theoretically predicted to be an inevitable feature of all reliability models that consider aging as a progressive accumulation of random damage. …In short, if the destruction of an organism occurs not in one but in two or more sequential random stages, this is sufficient for the phenomenon of aging (mortality increase) to appear and then to vanish at older ages. Each stage of destruction corresponds to one of the organism’s vitally important structures being damaged. In the simplest organisms with unique, critical structures, this damage usually leads to their deaths. Therefore defects in such organisms do not accumulate, and the organisms themselves do not age—they just die when damaged. In more complex organisms with many vital structures and significant redundancy, every occurrence of damage does not lead to death because of this redundancy. Defects do accumulate, therefore, giving rise to the phenomenon of aging (mortality increase). Thus, aging is a direct consequence (trade-off) of systems redundancy that ensures increased reliability and lifespan of organisms. As defects accumulate, the redundancy in the number of elements finally disappears. As a result of this redundancy exhaustion, the organism degenerates into a system with no redundancy, that is, a system with elements connected in series, with the result being that any new defect leads to death. In such a state, no further accumulation of damage can be achieved, and the mortality rate levels off. (Pp. 530-531).

The full text of the paper is available online at <http://www.src.uchicago.edu/~gavr1/JTB-01.pdf>. Contact Julie Antelman for hard-copy. Also available for science correspondents/reporters is a set of brief comments on the paper made by other experts who have given permission to be quoted by journalists.