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Abstract

The quest for general theory of aging and longevity has become an important part of

biodemographic studies (Carey & Judge, 2001). In this paper we suggest to include the

reliability theory in the theoretical arsenal of biodemographic research for developing a

comprehensive theory of aging and longevity. Reliability theory is a general theory about

systems failure. It allows researchers to predict the age-related failure kinetics for a system of

given architecture (reliability structure) and given reliability of its components. Reliability

theory predicts that even those systems that are entirely composed of non-aging elements

(with a constant failure rate) will nevertheless deteriorate (fail more often) with age, if these

systems are redundant in irreplaceable elements. Aging, therefore, is a direct consequence of

systems redundancy. Reliability theory also predicts the late-life mortality deceleration with

subsequent leveling-off, as well as the late-life mortality plateaus, as an inevitable

consequence of redundancy exhaustion at extreme old ages. The theory explains why

mortality rates increase exponentially with age (the Gompertz law) in many species, by taking

into account the initial flaws (defects) in newly formed systems. It also explains why

organisms 'prefer' to die according to the Gompertz law, while technical devices usually fail

according to the Weibull (power) law. Theoretical conditions are specified when organisms

die according to the Weibull law: organisms should be relatively free of initial flaws and

defects. The theory makes it possible to find a general failure law applicable to all adult and

extreme old ages, where the Gompertz and the Weibull laws are just special cases of this more

general failure law. The theory explains why relative differences in mortality rates of

compared populations (within a given species) vanish with age, and mortality convergence is

observed due to the exhaustion of initial differences in redundancy levels. Overall, reliability

theory has an amazing predictive and explanatory power with a few, very general and realistic

assumptions. Therefore, reliability theory seems to be a promising approach for developing a

comprehensive biodemographic theory of aging and longevity integrating mathematical

methods with specific biological knowledge.
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1. Introduction

There is a growing interest to the biodemography of aging and to the search for a general

theory that can explain what aging is and why and how it happens (Carey & Judge, 2001).

There is also a need for a general theoretical framework that may allow researchers to handle

an enormous amount of diverse observations related to aging phenomena. Empirical

observations on aging have become so numerous and abundant that a special 3-volume

encyclopedia, The Macmillan Encyclopedia of Aging, is now required for even a partial

coverage of the accumulated facts (Ekerdt, 2002). To transform these numerous and diverse

observations into a comprehensive body of knowledge, a general theory of species aging and

longevity is required. This theory is also important for understanding the trends and prospects

for human longevity (Horiuchi, 2000).

A general theory of aging may come in the future from a synthesis between systems

theory (reliability theory) and specific biological knowledge. Reliability theory is a general

theory about systems failure, which allows researchers to predict age-related failure kinetics

for a system of given architecture (reliability structure) and given reliability of its components

(Gavrilov & Gavrilova, 1991; 2001). As for specific biological knowledge, many researchers

believe that it could be provided by biodemographic studies of aging and longevity (Carey &

Judge, 2001).

Attempts to develop a fundamental quantitative theory of aging, mortality, and lifespan

have deep historical roots. In 1825, the British actuary Benjamin Gompertz discovered a law

of mortality (Gompertz, 1825), known today as the Gompertz law (Strehler, 1978; Finch,

1990; Gavrilov & Gavrilova, 1991; Olshansky & Carnes, 1997). Specifically, he found that

the force of mortality (known in modern science as mortality rate, hazard rate, or failure rate)
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increases in geometrical progression with the age of adult humans. According to the

Gompertz law, human mortality rates double over about every 8 years of adult age. Gompertz

also proposed the first mathematical model to explain the exponential increase in mortality

rate with age (Gompertz, 1825). Moreover, he found that at advanced ages mortality rates

increase less rapidly than an exponential function, thus forestalling two centuries ago the

recent fuss over 'late-life mortality deceleration' (Fukui et al., 1993; 1996; Khazaeli et al.,

1996; Horiuchi & Wilmoth, 1998; Vaupel et al., 1998; Partridge & Mangel, 1999), 'mortality

leveling off' (Carey & Liedo, 1995; Clark & Guadalupe, 1995; Vaupel et al., 1998), and 'late-

life mortality plateaus' (Mueller & Rose, 1996; Tower, 1996; Pletcher & Curtsinger, 1998;

Wachter, 1999). For a more in-depth analysis of the previous extensive studies on mortality

leveling-off (Makeham, 1867; Brownlee, 1919; Perks, 1932; Greenwood & Irwin, 1939;

Mildvan & Strehler; 1960; Strehler, 1960; Economos, 1979; 1980; 1983; 1985; Gavrilov &

Gavrilova, 1991) see the review by Olshansky (1998).

The history of mortality studies at extreme ages is very rich in ideas and findings. In this

paper we would like to bring more attention to one seminal paper, which was published more

than 60 years ago (Greenwood & Irwin, 1939). Interestingly, this article was considered to be

so important that it was featured at the front page of the journal “Human Biology.”

This study, accomplished by the famous British statistician and epidemiologist, Major

Greenwood, may be interesting to discuss again now because this 1939 article correctly

describes and forestalls the main specific regularities of mortality at advanced ages.

The first important finding was formulated by Greenwood and Irwin in the following way:

“…the increase of mortality rate with age advances at a slackening rate, that nearly all,

perhaps all, methods of graduation of the type of Gompertz’s formula over-state senile
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mortality” (Greenwood, Irwin, 1939, p.14). This observation is confirmed now and it is

known as the “late-life mortality deceleration.”

The authors also suggested “the possibility that with advancing age the rate of mortality

asymptotes to a finite value” (Greenwood, Irwin, 1939, p.14). Their conclusion that mortality

at exceptionally high ages follows a first order kinetics (also known as the law of radioactive

decay) was confirmed later by other researchers, including A.C. Economos (1979; 1980;

1983; 1985), who demonstrated the correctness of this law for humans and laboratory

animals. This observation is known now as the “mortality leveling-off” at advanced ages, and

as the “late-life mortality plateau.” Moreover, Greenwood and Irwin made the first estimates

for the asymptotic value of human mortality (one-year probability of death, qx) at extreme

ages using data from the life insurance company. According to their estimates, “… the

limiting values of qx are 0.439 for women and 0.544 for men” (Greenwood and Irwin,

1939, p.21). It is interesting that these first estimates are very close to estimates obtained later

using more numerous and accurate human data including recent data on supercentenarians

(those who survive to age 110).

The Gompertz law of exponential increase in mortality rates with age is observed in many

biological species (Strehler, 1978; Finch, 1990), including humans, rats, mice, fruit flies, flour

beetles, and human lice (Gavrilov & Gavrilova, 1991), and, therefore, some general

theoretical explanation for this phenomenon is required. Many attempts to provide such

theoretical underpinnings for the Gompertz law have been made (see reviews in Strehler,

1978; Gavrilov & Gavrilova, 1991), and the problem now is to find out which of these models

is correct.
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A comprehensive biodemographic theory of species aging and longevity should provide

answers to the following questions:

(1) Why do most biological species deteriorate with age (i.e., die more often as they grow

older) while some primitive organisms do not demonstrate such a clear age dependence for

mortality increase (Haranghy & Balázs, 1980; Finch, 1990; Martinez, 1998)?

(2) Specifically, why do mortality rates increase exponentially with age in many adult

species (Gompertz law)? How should we handle cases when the Gompertzian mortality law is

not applicable?

(3) Why does the age-related increase in mortality rates vanish at older ages? Why do

mortality rates eventually decelerate compared to predictions of the Gompertz law,

occasionally demonstrate leveling-off (late-life mortality plateau), or even a paradoxical

decrease at extreme ages?

(4) How do we explain the so-called compensation law of mortality (Gavrilov &

Gavrilova, 1991)? This paradoxical phenomenon refers to the observation that high mortality

rates in disadvantaged populations (within a given species) are compensated for by a low

apparent 'aging rate' (longer mortality doubling period). As a result of this compensation, the

relative differences in mortality rates tend to decrease with age within a given biological

species. This is true for male-female comparisons, for international comparisons of different

countries within the same sex, as well as for within-species comparisons of animal stocks

(Gavrilov & Gavrilova, 1991). The theory of aging and longevity has to explain this paradox

of mortality convergence.

Following a long-standing tradition of biological thought, the search for a general

biological theory to explain aging and longevity has been made mainly in terms of
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evolutionary biology (Medawar, 1946; 1952; Williams, 1957; 1966; Hamilton, 1966; Rose,

1991; Carnes & Olshansky, 1993; Charlesworth, 1994) and genetics (Finch, 1990; Jazwinski,

1996; 1998; Finch & Tanzi, 1997; Carnes et al., 1999). However, the attempts to explain 'late-

life mortality plateaus' using evolutionary theory (Mueller & Rose, 1996) have failed so far

because they required highly specialized and unrealistic assumptions (see critical reviews by

Charlesworth & Partridge, 1997; Pletcher & Curtsinger, 1998; Wachter, 1999). It looks like

the evolutionary theory is more appropriate to explain early successes of biological species

(e.g., reproductive success), rather than their later failures (aging and death). There seems to

be a missing piece in the theoretical arsenal of evolutionary biologists trying to explain aging,

and this missing piece is about the general theory of system failures. This theory, known as

the theory of reliability (Lloyd & Lipow, 1962; Barlow & Proshan, 1965; 1975; Kaufmann et

al., 1977; Crowder et al., 1991; Aven & Jensen, 1999; Rigdon & Basu, 2000), allows

researchers to understand many puzzling features of mortality and lifespan (Gavrilov, 1978;

1987; Gavrilov et al., 1978; Abernethy, 1979; Ďoubal, 1982; Gavrilov & Gavrilova, 1991;

1993; 2001; Bains, 2000) not readily explainable otherwise (i.e., the Gompertz law, mortality

plateaus, and the compensation law of mortality).

The purpose of this paper is to introduce the ideas and methods of reliability theory to

biodemographers interested in understanding the mechanisms of aging, mortality, survival,

and longevity. It is also important to review and summarize the recent scientific literature on

reliability approach to the problem of biological aging (Miller, 1989; Gavrilov & Gavrilova,

1991; 2001; Abernethy, 1998; Bains, 2000). The main emphasis here is made on the

accomplishments of the reliability approach rather than previous occasional mistakes, because

some questionable models (Murphy, 1978; Skurnick & Kemeny, 1978; Koltover, 1983; 1997;
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Witten, 1985) were already reviewed elsewhere (Gavrilov, 1984; 1987; Gavrilov &

Gavrilova, 1991). This biodemographic paper also elaborates further some results and ideas

published in the book on related topic (Gavrilov & Gavrilova, 1991).

2. Reliability Theory: General Overview

Reliability theory is a body of ideas, mathematical models, and methods directed to

predict, estimate, understand, and optimize the lifespan distribution of systems and their

components (adapted from Barlow & Proschan, 1965). Reliability of the system (or

component) refers to its ability to operate properly according to a specified standard (Crowder

et al., 1991). Reliability is described by the reliability function S(x), which is the probability

that a system (or component) will carry out its mission through time x (Rigdon & Basu,

2000). The reliability function (also called the survival function) evaluated at time x is just the

probability P, that the failure time X, is beyond time x. Thus, the reliability function is defined

in the following way:

where F(x) is a standard cumulative distribution function in the probability theory (Feller,

1968). The best illustration for the reliability function S(x) is a survival curve describing the

proportion of those still alive by time x (the lx column in life tables). Failure rate λ(x), also

called the hazard rate h(x), is defined as the relative rate for reliability function decline:

(1)).(1)(1)()( xFxXPxXPxS −=≤−=>=
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Failure rate is an equivalent to mortality force, µ(x), in demography. In those cases when

the failure rate is constant (does not increase with age), we have non-aging system

(component) that does not deteriorate (does not fail more often) with age. The reliability

function of non-aging systems (components) is described by the exponential distribution:

This failure law describes 'lifespan' distribution of atoms of radioactive elements and it is

also observed in many wild populations with high extrinsic mortality (Finch, 1990; Gavrilov

& Gavrilova, 1991).

If failure rate increases with age, we have an aging system (component) that deteriorates

(fails more often) with age. There are many failure laws for aging systems and the Gompertz

law with exponential increase of the failure rates with age is just one of them (see Gavrilov &

Gavrilova, 1991). In reality, system failure rates may contain both non-aging and aging terms

as, for example, in the case of the Gompertz-Makeham law of mortality (Makeham, 1860;

Strehler, 1978; Gavrilov & Gavrilova, 1991):
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In this formula the first, age-independent term (Makeham parameter, A) designates the

constant, 'non-aging' component of the failure rate (presumably due to extrinsic causes of

death, such as accidents and acute infections), while the second, age-dependent term (the

Gompertz function, R⋅ eαx) designates the 'aging' component, presumably due to deaths from

age-related degenerative diseases like cancer and heart disease.

The compensation law of mortality in its strong form refers to mortality convergence,

when higher values for the parameter α (in the Gompertz function) are compensated by lower

values of the parameter R in different populations of a given species:

where B and M are universal species-specific invariants. Sometimes this relationship is also

called the Strehler-Mildvan correlation (Strehler & Mildvan, 1960; Strehler, 1978), although

that particular correlation was largely an artifact of the opposite biases in parameters

estimation caused by not taking into account the age-independent mortality component, the

Makeham term A (see Gavrilov & Gavrilova, 1991). Parameter B is called the species-specific

lifespan (95 years for humans), and parameter M is called the species-specific mortality rate

(0.5 year-1 for humans). These parameters are the coordinates for convergence of all the

mortality trajectories into one single point (within a given biological species), when

extrapolated by the Gompertz function (Gavrilov & Gavrilova, 1991). In those cases when the

compensation law of mortality is not observed in its strong form, it may still be valid in its

weak form - i.e., the relative differences in mortality rates of compared populations tend to

decrease with age in many species. Explanation of the compensation law of mortality is a

(5))ln()ln( α⋅−= BMR
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great challenge for many theories of aging and longevity (Strehler, 1978; Gavrilov &

Gavrilova, 1991).

There are some exceptions both from the Gompertz law of mortality and the compensation

law of mortality that have to be understood and explained. In some cases the organisms die

according to the Weibull (power) law (Hirsch & Peretz, 1984; Janse et al., 1988; Hirsch et al.,

1994; Eakin et al., 1995; Vanfleteren et al., 1998):

µ(x) =λxα for x ≥ 0, where λ, α > 0 (6)

The Weibull law is more commonly applicable for technical devices (Barlow & Proschan,

1975; Rigdon & Basu, 2000) while the Gompertz law is more common for biological systems

(Strehler, 1978; Finch, 1990; Gavrilov & Gavrilova, 1991). Both the Gompertz and the

Weibull failure laws have fundamental explanation rooted in reliability theory (Barlow &

Proschan, 1975) and are the only two theoretically possible limiting extreme value

distributions for systems whose lifespans are determined by the first failed component

(Gumbel, 1958; Galambos, 1978). In other words, as the system becomes more and more

complex (contains more vital components, each being critical for survival), its lifespan

distribution may asymptotically approach one of the only two theoretically possible limiting

distributions - either Gompertz or Weibull (depending on the early kinetics of failure of

system components). The two limit theorems in the statistics of extremes (Gumbel, 1958;

Galambos, 1978) make the Gompertz and the Weibull failure laws as fundamental as are

some other famous limiting distributions known in regular statistics, e.g., the normal

distribution and the Poisson distribution. It is puzzling, however, why organisms prefer to die
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according to the Gompertz law, while technical devices typically fail according to the Weibull

law. One possible explanation of this mystery is suggested in the next section of this paper.

The phenomena of mortality increase with age and the subsequent mortality leveling-off

are theoretically predicted to be an inevitable feature of all reliability models that consider

aging as a progressive accumulation of random damage (Gavrilov & Gavrilova, 1991; 2001).

The detailed mathematical proof of this prediction for some particular models is provided in

the next two sections of this paper. In short, if the destruction of an organism occurs not in

one but in two or more sequential random stages, this is sufficient for the phenomenon of

aging (mortality increase) to appear and then to vanish at older ages. Each stage of destruction

corresponds to one of the organism's vitally important structures being damaged. In the

simplest organisms with unique, critical structures, this damage usually leads to their deaths.

Therefore defects in such organisms do not accumulate, and the organisms themselves do not

age - they just die when damaged. In more complex organisms with many vital structures and

significant redundancy, every occurrence of damage does not lead to death because of this

redundancy. Defects do accumulate, therefore, giving rise to the phenomenon of aging

(mortality increase). Thus, aging is a direct consequence (trade-off) of systems’ redundancy

that ensures increased reliability and lifespan of organisms. As defects accumulate, the

redundancy in the number of elements finally disappears. As a result of this redundancy

exhaustion, the organism degenerates into a system with no redundancy, that is, a system with

elements connected in series, with the result being that any new defect leads to death. In such

a state, no further accumulation of damage can be achieved, and the mortality rate levels off.

The next two sections provide mathematical proof for these ideas.



Gavrilov L.A. “Biodemographic (Reliability) Theory of Aging and Longevity

13

3. Reliability Theory of Aging for
Highly Redundant Systems Saturated with Defects

In this section we will show that the exponential growth in mortality rate, as well as other

aging phenomena (late-life mortality deceleration and compensation law of mortality),

follows naturally from a simple reliability model and two general features of biosystems.

The first fundamental feature of biosystems is that, in contrast to technical (artificial)

devices which are constructed out of previously manufactured and tested components,

organisms form themselves in ontogenesis through a process of self-assembly out of de novo

forming and externally untested elements (cells). The second property of organisms is the

extraordinary degree of miniaturization of their components (the microscopic dimensions of

cells, as well as the molecular dimensions of information carriers like DNA and RNA),

permitting the creation of a huge redundancy in the number of elements. Thus, we expect that

for living organisms, in distinction to many technical (manufactured) devices, the reliability

of the system is achieved not by the high initial quality of all the elements but by their huge

numbers (redundancy). As will be shown later, this feature of organisms provides an

explanation why the failure rate grows as an exponential rather than a power function of age,

and it also enables researchers to understand the other mortality phenomena (e.g.,

compensation law of mortality).

Figure 1 presents a scheme explaining the causes of cardinal differences in reliability

structure between technical devices and biological systems.

Figure 1 About Here
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The fundamental difference in the manner in which the system is formed (external

assembly in the case of technical devices and self-assembly in the case of biosystems) has two

important consequences. First, it leads to the macroscopicity of technical devices in

comparison with biosystems, since technical devices are assembled 'top-down' with the

participation of a macroscopic system (man) and must be suitable for this macroscopic system

to use (i.e., commensurate with man). Organisms, on the other hand, are assembled 'bottom-

up' from molecules and cells, resulting in an exceptionally high degree of miniaturization of

the component parts. Second, since technical devices are assembled under the control of man,

the opportunities to pretest components (external quality control) are incomparably greater

than in the self-assembly of biosystems. The latter inevitably leads to organisms being

'littered' with a great number of defective elements. As a result, the reliability of technical

devices is assured by the high quality of elements, with a strict limit on their numbers because

of size and cost limitations (Figure 2a), while the reliability of biosystems is assured by an

exceptionally high degree of redundancy to overcome the poor quality of some elements

(Figure 2b).

Figure 2 About Here

It is interesting to note that the uniqueness of individuals, which delights biologists so

much, may be caused by 'littering' the organisms with defects and thus forming a unique

pattern of individual damage. Our past experience working with dilapidated computer

equipment in Russia gave rise to the same thought: the behavior of this equipment could only

be described by resorting to such 'human' concepts as character, freaks, personality, and
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change of mood. As will be shown later, ideas of this kind proved to be useful in constructing

a mathematical model of aging and longevity for biological systems.

The idea that living organisms are starting their lives with a large number of defects has

deep historical roots. Biological justification for this idea was discussed by Dobzhansky

(1962). He noted that, from the biological perspective, Hamlet’s “thousand natural shocks

that flesh is heir to” was an underestimate and that in reality “the shocks are innumerable”

(Dobzhansky, 1962, p.126). Also, the system may behave as if it has a large number of initial

defects when some of its components are apparently nonfunctional for whatever reason

(because of impaired regulation, disrupted communication between components, or ‘selfish’

behavior of DNA, cells, and tissues, etc.). An apparent lack of any function is typical for

many structures of living organisms, starting from the molecular level (e.g., nonfunctional,

selfish DNA and inactive pseudogenes, see Griffiths et al., 1996), up to the level of the human

brain (see Finger et al., 1988).

We begin to consider our model by first analyzing the simplest case when all the elements

of the system are initially functional (which is typical for technical devices) and have a

constant failure rate k. If these non-aging elements are organized into blocks of n mutually

substitutable elements so that the failure of a block occurs only when all the elements of the

block fail (parallel construction in the reliability theory context), the cumulative distribution

function for block failure, Fb(n,k,x), depends on age x in the following way:

Therefore, the reliability function of a block, Sb(n,k,x) can be represented as:

( ) (7)1)(),,(
nkx

b exXPxknF −−=≤=
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Consequently, the failure rate of a block µb(n,k,x) can be written as follows:

≈ nknxn-1 when x << 1/k (early-life period approximation, when 1-e-kx ≈ kx)

≈ k when x >> 1/k (late-life period approximation, when 1-e-kx ≈ 1)

Thus, the failure rate of a block initially grows as a power function of age (the Weibull

law). Then the tempo at which the failure rate grows declines, and the failure rate approaches

asymptotically an upper limit equal to k. Here we should pay attention to three significant

points. First, a block constructed out of non-aging elements is now behaving like an aging

object: i.e., aging is a direct consequence of the redundancy of the system (redundancy in the

number of elements). Second, at very high ages the phenomenon of aging apparently

disappears (failure rate levels-off), as redundancy in the number of elements vanishes. The

failure rate approaches an upper limit, which is totally independent of the initial number of

elements, but coincides with the rate of their loss (parameter k). Third, the blocks with

different initial levels of redundancy (parameter n) will have very different failure rates in

early life, but these differences will eventually vanish as failure rates approach the upper limit

determined by the rate of elements' loss (parameter k). Thus, the compensation law of

mortality (in its weak form) is an expected outcome of this model.

( )
( ) (9)
11

1

),,(

),,(
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These statements, based on general analytical considerations, are also illustrated here with

the following particular numerical example. Fig. 3 presents the results of computer

simulation of mortality kinetics in systems with different levels of redundancy. The scales for

mortality rates (vertical axis), and for the age (horizontal axis) are presented in dimensionless

units (μ/k for mortality rates, and kx for age), to ensure the generalizability of the results

(independence on failure rate of the elements in the system, parameter k). Also, the log scale

is used to explore the system behavior in a wide range of ages (0.01 - 10 units), and mortality

rates ( 0.00000001 - 1.0 units).

Figure 3 About Here

This graph depicts mortality trajectories for five systems with different degrees of

redundancy:

(1) System # 1 has only one unique element (no redundancy) and it has the highest failure

rate, which does not depend on age (no aging).

(2) System # 2 has two elements connected in parallel (one element is redundant) and the

failure rate is initially increasing with age (aging appears). The apparent rate of aging can be

characterized by a slope coefficient, which is equal to one. Finally the failure rate levels-off at

advanced ages.

(3) System # 3 has three elements connected in parallel (two elements are redundant) and

the failure rate is initially increasing with age (an apparent aging rate, a slope coefficient is

equal to two). Then the failure rate levels-off at advanced ages.
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(4) System # 4 has four elements connected in parallel (three elements are redundant,

degree of redundancy = 3) and the failure rate is initially increasing with age with slope

coefficient = 3 (apparent relative aging rate). Then again the failure rate levels-off at

advanced ages.

(5) System # 5 has five elements connected in parallel (four elements are redundant,

degree of redundancy = 4) and the failure rate is initially increasing with age with the steepest

slope coefficient = 4 (apparent relative aging rate). Finally, the mortality trajectory levels-off

at advanced ages.

This computational example illustrates the following statements:

(1) Aging is a direct consequence of system's redundancy, and the expression of aging is

directly related to the degree of system's redundancy. Specifically, an apparent relative aging

rate is just equal to a degree of redundancy in parallel systems.

(2) All mortality trajectories tend to converge with age, so that the compensation law of

mortality is observed.

(3) All mortality trajectories level-off at advanced ages and mortality plateau is observed.

Thus, the major biodemographic phenomena (aging itself, compensation law of mortality,

late-life mortality deceleration and late-life mortality plateaus) are already observed in the

simplest redundant systems. However, to explain the Gompertz law of mortality, an additional

idea should be taken into account (see later).

To continue analytical considerations of system's reliability let us describe a more

complex case. If a system is constructed out of m irreplaceable blocks in such a way that the

failure of any of the blocks leads to the failure of the whole system (series construction in the
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reliability theory context), the failure rate of the system is equal to the sum of the failure rates

of all the blocks:

≈ mnknxn-1 when x << 1/k (early-life period approximation, when 1-e-kx ≈ kx)

≈ mk when x >> 1/k (late-life period approximation, when 1-e-kx ≈ 1)

In this model, the failure rate grows as a power function rather than as an exponential

function of age. Therefore, this kind of model for a long time seemed incapable of describing

the exponential growth of the failure rate in biological systems, and attention was drawn to

the search for more complex failure scenarios such as the avalanche-like failure models (Le

Bras, 1976; Gavrilov & Gavrilova, 1991).

In this section, we demonstrate that the reliability model presented above has been

undeservedly rejected merely because it started by analyzing initially ideal structures in which

all the elements are functional from the outset. This standard assumption may be justified for

technical devices manufactured from pretested components, but it is not justified for living

organisms, presumably saturated with defects, for the reasons described earlier. It is therefore

worthwhile to examine another particular case of the model in which initially functional

elements occur very rarely with a low probability q (This interpretation of the assumption

could be relaxed. See the end of this section).

In this case, the distribution of the blocks in the organism according to the number i of

initially functional elements they contain is described by the Poisson law with parameter λ =
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nq, corresponding to the mean number of initially functional elements in a block. Strictly

speaking, this distribution ought to be truncated on the right, since the number of functional

elements (i), cannot exceed the total number (n) of elements in a block. In addition, for

initially living organisms the distribution ought also to be truncated on the left, since

according to the model an organism which contains a block without any functional elements

(i = 0) cannot be alive. Therefore, the distribution of blocks according to the number i of

initially functional elements within initially living organisms is determined by the following

probabilities Pi:

Parameter c is a normalizing factor that ensures the sum of the probabilities of all possible

outcomes being equal to unity:

For sufficiently high values of n and λ, the normalizing factor turns out to be hardly greater

than unity.

As has already been noted, the failure rate of a system constructed out of m blocks

connected in series is equal to the sum of the failure rates of these blocks µb(i):
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In its turn, the failure rate of blocks with i initially functional elements is given by:

≈ ik(kx)i-1 when x << 1/k (early-life period approximation, when 1-e-kx ≈ kx)

≈ k when x >> 1/k (late-life period approximation, when 1-e-kx ≈ 1)

Putting together these two formulae, we obtain:

Thus, in the early-life period (when x << 1/k and, therefore, 1-e-kx ≈ kx) the mortality

kinetics follows the exponential Gompertzian law:

ε(x) is close to zero for large n and small x (in early life period).

In the late-life period (when x >> 1/k and, therefore, 1-e-kx ≈ 1), the failure rate levels-off
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and the mortality plateau is observed:

Thus, the failure rate of an organism initially (for x << 1/k) grows exponentially with age

following the Gompertz law. If the background, age-independent component of mortality (A)

also exists in addition to Gompertz function, we obtain the well-known Gompertz-Makeham

law described earlier. At advanced ages the rate of mortality decelerates and approaches

asymptotically an upper limit equal to mk.

The model explains not only the exponential increase in mortality rate with age and the

subsequent leveling off, but also the compensation law of mortality.

Indeed, according to the previous notations:

i.e. the quantities ln(R) and α are parametrically linked via the common parameter λ,

which allows us to present ln(R) as a function of α in explicit form:

where M = cmα, B = 1/k.

Thus, the compensation law of mortality is observed: lower mortality rate due to

decreased parameter R is compensated by higher mortality acceleration due to increased

(18b),
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parameter α. According to this model, the compensation law is inevitable whenever

differences in mortality arise from differences in the parameter λ (the mean number of

initially functional elements in the block), while the 'true aging rate' (rate of elements' loss, k)

is similar in different populations of a given species (presumably because of homeostasis). In

this case, the species-specific lifespan estimated from the compensation law as an expected

age at mortality convergence (95 years for humans, see Gavrilov & Gavrilova, 1991)

characterizes the mean lifetime of the elements (1/k).

The model also predicts certain deviations from the exact mortality convergence in a

specific direction because the parameter M proved to be a function of the parameter α

according to this model (see earlier). This prediction could be tested in future studies.

It also follows from this model that even small progress in optimizing the processes of

ontogenesis and increasing the numbers of initially functional elements (λ) can potentially

result in a remarkable fall in mortality and a significant improvement in lifespan. This

optimistic prediction is supported by experimental evidence of increased offspring lifespan in

response to protection of parental germ cells against oxidative damage just by feeding the

future parents with antioxidants (Harman & Eddy, 1979). Increased lifespan is also observed

among the progeny of parents with a low respiration rate (proxy for the rate of oxidative

damage to DNA of germ cells, see Gavrilov & Gavrilova, 1991). The model also predicts that

early life events may affect survival in later adult life through the level of initial damage. This

prediction proved to be correct for such early life indicators as parental age at a person's

conception (Gavrilov & Gavrilova, 1997a; b; 2000) and the month of person's birth

(Doblhammer, 1999; Gavrilov & Gavrilova, 1999). The idea of fetal origins of adult

degenerative diseases and early-life programming of late-life health and survival is being



Gavrilov L.A. “Biodemographic (Reliability) Theory of Aging and Longevity

24

actively discussed in the scientific literature (Lucas, 1991; Barker, 1992; 1998; Kuh & Ben-

Shlomo, 1997; Leon et al., 1998; Lucas et al., 1999; Blackwell et al., 2001).

The model assumes that most of the elements in the system are initially non-functional.

This interpretation of the assumption can be relaxed, however, because most non-functional

elements (e.g., cells) may have already died and eliminated by the time the adult organism is

formed. In fact, the model is based on the hypothesis that the number of functional elements

in the blocks is described by the Poisson distribution, and the fate of defective elements and

their death in no way affects the conclusions of the model. Therefore, those readers who resist

the idea that they are built-up of unreliable trash (or feel uncomfortable with the biological

justification for this idea provided earlier), can choose a more comfortable interpretation for

the same model and formulae, namely that stochastic events in early development determine

later-life aging and survival through variation in initial redundancy of organs and tissues (see,

for example, Finch & Kirkwood, 2000). We believe that, with these reservations mentioned

above, the earlier criticism of the suggested model as based on "biologically indefensible

assumptions" that are "highly unlikely" (see Pletcher & Neuhauser, 2000, p.530) could be also

relaxed.

The conclusions of the model are valid for any value of the parameter λ (mean number of

initially functional elements), no matter how large. This is important, because it is known that

as parameter λ increases, the Poisson distribution approximates to the normal distribution

(Feller, 1968). Thus, the proposed model in fact encompasses a wide spectrum of distributions

of blocks according to their degree of redundancy, starting with a marked positive (right-

sided) skewness (for small values of λ) and ending with distributions which are close to the

symmetrical normal distribution (for large values of λ). In other words, the proposed model
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might also be called the model of series-connected blocks with varying degrees of

redundancy. This rather general model is generalized even further in the next section.

4. Reliability Theory of Aging for
Partially Damaged Redundant Systems

In the preceding section, we examined a reliability model for a system consisting of m

series-connected blocks, each of which contains n parallel-connected elements. It was shown

that the behavior of such a system depends decisively on the initial conditions. If the system is

initially ideal, i.e., if the probability q that the elements are initially functional is unity, the

model leads to a power function for failure rate increase with age (the Weibull law). On the

other hand, if the system is from the very beginning saturated with defects and the probability

for a given element being initially functional is close to zero, the model leads to an

exponential function for failure rate increase with age (the Gompertz law). In both cases,

however, there exists an upper limit to the failure rate which is determined by the product of

the number of blocks (m) and the failure rate of the elements (k). In this section, we shall

examine the more general case in which the probability of an element being initially

functional can assume any possible value: 0 < q ≤ 1.

In the general case, the distribution of blocks in the organism according to the number of

initially functional elements is described by the binomial distribution rather than the Poisson

law. For an initially living organism, this distribution has to be truncated on the left, since

according to the model an organism which contains a block without any functional elements (i

= 0) cannot be alive.

Therefore, the distribution of blocks according to the number i of initially functional
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elements within initially living organisms is given by the following probabilities Pi:

where:

Parameter c is a normalizing factor that ensures that the sum of the probabilities of all

outcomes is unity:

The failure rate of a system constructed of m series-connected blocks is equal to the sum

of the failure rates of the blocks:

As has been already noted, at the initial moment in time, when x << 1/k, the failure rate of

a block with i initially functional elements is given by:
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Putting together these two formulae, we obtain:

The sum represented in this expression is the binomial formula for the expression

[(1-q) + qkx]n-1. It is therefore possible to write:

and x0 is a parameter named the initial virtual age of the system, IVAS (Gavrilov & Gavrilova,

1991). Indeed, this parameter has the dimension of time, and corresponds to the age by which

an initially ideal system would have accumulated as many defects as a real system already has

at the initial moment in time (at x = 0). In particular, when q = 1, i.e., when all the elements

are functional at the beginning, the initial virtual age of the system is zero and the failure rate

grows as a power function of age (the Weibull law), as described in the previous section.
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However, when the system is not initially ideal (q < 1), we obtain the so-called binomial law

of mortality (Gavrilov & Gavrilova, 1991):

In the case when x0 > 0, there is always an initial period of time, such that x << x0 and the

following approximation to the binomial law is valid:

Hence, for any value of q < 1 there is always a period of time x when the number of

newly formed defects is much less than the original number, and the failure rate grows

exponentially with age:

So, if the system is not initially ideal (q<1), the failure rate in the initial period of time

grows exponentially with age according to the Gompertz law. A numerical example provided

in Fig. 4 shows that the binomial law can reproduce the important features of observed

mortality curves: exponential increase in mortality rates at younger ages (20-60 years), and

'mortality deceleration' in later life, when mortality rates increase with age at a slower pace
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compared to the Gompertz law. The mathematical proof of this statement (asymptotic

analyses) is provided later (formulae 32-34).

Figure 4 About Here

The model discussed here not only provides an explanation for the exponential increase in

the failure rate with age, but it also explains the compensation law of mortality. Indeed,

according to the above formulae:

i.e., the quantities ln(R) and α are parametrically linked via the quantity (n-1), allowing ln(R)

to be represented as a function of α:

where M = cmα(1-q) + cmkq (31b)

Thus, the compensation law of mortality is observed whenever differences in mortality are
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other parameters, including the 'true aging rate' (rate of elements' loss k) are similar in

populations of a given species (presumably because of homeostasis - stable body temperature,

glucose concentration, etc.). For lower organisms with poor homeostasis there may be

deviations from this law. Our analysis of data published by Pletcher et al. (2000) revealed that

in Drosophila this law holds true for male-female comparisons (keeping temperature the

same), but not for experiments conducted at different temperatures, presumably because

temperature may influence the rate of element loss.

The length of the period when the failure rate grows exponentially depends on the value of

q. In general, the q-dependent behavior of the system in the age interval 0 < x << 1/k can be

reduced to the following three scenarios:

1. 0 < q ≤ 1/2. This case corresponds to the situation when less than half the total number

of elements is initially functional. In this case:

Therefore over the entire interval when x << 1/k, the condition x << x0 is also valid. In this

case, the failure rate grows exponentially with age throughout the interval under

consideration.

2. 1/2 < q < 1. This case corresponds to the situation when more than half of all elements

are initially functional. In this case:

In these circumstances, the age-dependence of mortality in the age interval under
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consideration (0 < x << 1/k) consists of two stages:

(a) the first stage of the initial period, when x << x0 and consequently the binomial law of

mortality reduces to the Gompertz law.

(b) the second stage of the initial period, when x ≈ x0 and only the binomial law of

mortality in its full form is valid, without any approximations.

3. 1/2 << q < 1. This case corresponds to the situation when only a small proportion of

elements is initially defective. In this case:

The age-dependence of mortality then consists of three stages:

(a) the first stage of the initial period, when x << x0 and the binomial law of mortality

reduces to the Gompertz law.

(b) the second stage of the initial period, when x ≈ x0 and only the binomial law of

mortality is applicable.

(c) the third stage of the initial period, when x << x0 << 1/k and the binomial law of

mortality reduces to the power law for failure rate increase with age (the Weibull law).

As q tends to unity, the length of the first stage of the initial period, with exponential

growth in the failure rate, is sharply reduced, and the length of the third stage is sharply

increased. In the extreme case of an initially ideal system (q = 1), we come to the Weibull

law, valid over the entire age interval 0 < x << 1/k. This case has been described in detail in

the previous section.

The failure rate of the blocks asymptotically approaches an upper limit which is
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independent on the number of initially functional elements and is equal to k. Therefore the

failure rate of a system consisting of m blocks in series tends asymptotically with increased

age to an upper limit mk, independently of the values of n and q.

Thus the reliability model described here provides an explanation for a general pattern of

aging and mortality in biological species: the exponential growth of failure rate in the initial

period, with the subsequent mortality deceleration and leveling-off, as well as the

compensation law of mortality. In addition, the model clarifies the conditions under which we

observe not the exponential law, but the power law for failure rate increase with age (the

Weibull law). Finally, the model allows researchers to treat two at first sight mutually

exclusive laws, the Gompertz law and the Weibull law, as special cases of a more general

binomial law of mortality which follows from this model.

According to the proposed model, the fate of non-functional elements and their death has

no effect whatsoever on the model's conclusions. Therefore the model will be valid even

when all the non-functional elements have already died by the time the adult organism has

been formed, and the adult organism consists only of functional elements (cells). What is

important is that a trace nevertheless remains in the form of the binomial distribution of

blocks according to the number of functional elements within the organism. In fact, this is the

essence of the model, and considerations of initially defective elements are only one of the

possible explanations for the existence of variability in the initial degree of redundancy. For

this reason, the proposed model might also be called the model of series-connected blocks

with varying degrees of redundancy.

Taking into account these notes, the basic conclusion of the model might be reformulated

as follows: if vital components of a system differ in their degree of redundancy, the mortality
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rate initially grows exponentially with age (according to the Gompertz law) with subsequent

leveling-off in later life. This statement is valid regardless of the shape of the binomial

distribution of blocks in the organism according to their degree of redundancy: whether there

is negative (left-sided) skewness, zero skewness (a normal distribution), or positive (right-

sided) skewness. The only effect of the shape of the distribution is that in the case of a

negative (left-sided) skewness of the distribution the exponential growth in the failure rate

may last only a short time, while in the case of a zero or positive skewness the period of

exponential growth in the failure rate is significantly longer.

The model may also help to resolve an apparent contradiction between exponential

increase in total mortality with age, as opposed to non-exponential (e.g., power) increase in

mortality from particular causes of death. Indeed, the classification of diseases and causes of

death is largely based on the anatomical principle and registration of the damage to particular

organs and tissues of the organism. One of the interesting features of the model is that each

component (block) may fail according to the Weibull (power) law, but this in turn may lead to

exponential increase of failure rate for the whole organism. Indeed, it turned out that the

Gompertz function is a better descriptor for 'all-causes' of death and combined disease

categories, while the Weibull function is a better descriptor of purer, single causes-of-death

(Juckett & Rosenberg, 1993).

5. Concluding Remarks

Reliability theory allows researchers to predict the age-related failure kinetics for a system

of given architecture (reliability structure) and given reliability of its components. As shown
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in this paper, the theory provides explanations of the fundamental problems regarding species

aging and longevity that were posed in the introduction of this paper:

(1) Reliability theory explains why most biological species deteriorate with age (i.e., die

more often as they grow older) while some primitive organisms do not demonstrate such a

clear age dependence for mortality increase. The theory predicts that even those systems that

are entirely composed of non-aging elements (with a constant failure rate) will nevertheless

deteriorate (fail more often) with age, if these systems are redundant in irreplaceable

elements. Aging, therefore, is a direct consequence of systems redundancy. The 'apparent

aging rate' (the relative rate of age-related mortality acceleration corresponding to parameter

α in the Gompertz law) increases, according to reliability theory, with higher redundancy

levels. Therefore, a negligible 'apparent aging rate' in primitive organisms (Haranghy &

Balázs, 1980; Finch, 1990; Martinez, 1998) with little redundancy is a predicted observation

for reliability theory.

At this point, however, evolutionary biologists have good reasons to argue with our

suggested explanation for negligible senescence. This is because evolutionary theory also

predicts negligible senescence among some primitive organisms, but for a completely

different reason (lack of parent-offspring asymmetry, see Charlesworth, 1994, pp.246-247).

Evolutionary biologists believe that effective repair mechanisms are responsible for the

negligible aging rate in some species and give the following arguments: "… unicellular

organisms, such as bacteria, which propagate simply by binary fission, and the germ lines of

multicellular organisms, have been able to propagate themselves without senescence over

billions of years, showing that biological systems are capable of ongoing repair and

maintenance and so can avoid senescence at the cellular level. Senescence cannot, therefore,
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just be an unavoidable cumulative result of damage." (Charlesworth, 2000, p.927). It is

important, however, not to overlook two key related questions posed by reliability theory:

What are the actual death rates observed in populations of species with negligible

senescence, as well as among germ cells?

Are these death rates really negligible (indicating perfect repair) or, on the contrary,

quite high (indicating low redundancy of these cells and organisms)?

Debates on these issues may be expected in the future, but there are promising

opportunities for merging the reliability and the evolutionary theories (Miller, 1989).

(2) The reliability theory explains why mortality rates increase exponentially with age in

many adult species (Gompertz law) by taking into account the initial flaws (defects) in newly

formed systems. It also explains why organisms 'prefer' to die according to the Gompertz law,

while technical devices usually fail according to the Weibull (power) law. Moreover, the

theory provides a sound strategy for handling those cases when the Gompertzian mortality

law is not applicable. In this case, the second best choice would be the Weibull law, which is

also fundamentally grounded in reliability theory. Theoretical conditions are specified when

organisms die according to the Weibull law: organisms should be relatively free of initial

flaws and defects.

In those cases when none of these two mortality laws is appropriate, reliability theory

offers more general failure law applicable to adult and extreme old ages. The Gompertz and

the Weibull laws are just special cases of this unifying more general law (see earlier sections

3 and 4).

(3) Reliability theory also explains why the age-related increase in mortality rates

vanishes at older ages. It predicts the late-life mortality deceleration with subsequent leveling-
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off, as well as the late-life mortality plateaus, as an inevitable consequence of redundancy

exhaustion at extreme old ages. This is a very general prediction of reliability theory: it holds

true for systems built of elements connected in parallel, for hierarchical systems of serial

blocks with parallel elements (see earlier sections 3 and 4), for highly interconnected

networks of elements (Bains, 2000), and for systems with avalanche-like random failures

(Gavrilov & Gavrilova, 1991).

The reliability theory also predicts that the late-life mortality plateaus will be observed at

any level of initial damage: for initially ideal systems, for highly redundant systems saturated

with defects, and for partially damaged redundant systems with an arbitrary number of initial

defects (see earlier).

Furthermore, reliability theory predicts paradoxical mortality decline in late life (before

eventual leveling-off to mortality plateau) if the system is redundant for non-identical

components with different failure rates (Barlow et al., 1965; Barlow & Proschan, 1975). Thus,

in those cases when 'apparent rejuvenation' is observed (mortality decline among the oldest-

old) there is no need to blame data quality or to postulate initial population heterogeneity and

'second breath' in centenarians. The late-life mortality decline is an inevitable consequence of

age-induced population heterogeneity expected even among initially identical individuals,

redundant in non-identical system components (Gavrilov & Gavrilova, 2001). Recently this

general explanation was also supported using computer simulations (Bains, 2000). Late-life

mortality decline was observed in many studies (Barrett, 1985; Carey et al., 1992; Khazaeli et

al., 1995; Klemera & Doubal, 1997) and stimulated interesting debates (Klemera & Ďoubal,

1997; Olshansky, 1998) because of the lack of reasonable explanation. Reliability theory

predicts that the late-life mortality decline is an expected scenario of systems failure.
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(4) The theory explains the compensation law of mortality, when the relative differences

in mortality rates of compared populations (within a given species) decrease with age, and

mortality convergence is observed due to the exhaustion of initial differences in redundancy

levels. Reliability theory also predicts that those experimental interventions that change 'true

aging rate' (rate of elements' loss) will also suppress mortality convergence, providing a useful

approach on how to search for factors affecting aging rate.

Overall, reliability theory has an amazing predictive and explanatory power and requires

only a few general and realistic assumptions. It offers a promising approach for developing a

comprehensive theory of aging and longevity that integrates mathematical methods with

biological knowledge including cell biology (Abernethy, 1998), evolutionary theory (Miller,

1989; Charlesworth, 1994) and systems repair principles (Rigdon & Basu, 2000). We

suggest, therefore, adding the reliability theory in the arsenal of biodemographic methods to

study aging and longevity.
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Figure Captions

Figure 1. Schema explaining why biological systems and technical devices may have

different solutions to the problem of achieving consistent reliability. Because of the different

way in which systems are created (self-assembly of organisms versus external assembly of

machines) two opposite strategies are used to achieve high reliability - either huge redundancy

in numbers of loose components (biosystems) or high standards for each unique component

(technical devices). Reliability of technical devices is, therefore, achieved through fault

avoidance (quality control), while biosystems solve the reliability problem through fault

tolerance (enhanced redundancy).

Figure 2. Diagrams illustrating the differences in reliability structure between (a) technical

devices and (b) biological systems. Each block diagram represents a system with m serially

connected blocks (each being critical for system survival, 5 blocks in these particular

illustrative examples) built of n elements connected in parallel (each being sufficient for block

being operational). Initially defective non-functional elements are indicated by crossing (x).

The reliability structure of technical devices (a) is characterized by relatively low

redundancy in elements (because of cost and space limitations), each being initially

operational because of strict quality control. Biological species, on the other hand, have a

reliability structure (b) with huge redundancy in small, often non-functional elements (cells).

The theoretical consequences of these differences are discussed in the text.
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Figure 3. The dependence of the logarithm of mortality force (failure rate) on logarithm of

age in five systems with different levels of redundancy (computer simulation experiment).

Both the failure rate and the age are presented in dimensionless units as explained in the text.

The dependence 1 is for system containing only one element (no redundancy). The

dependence 2 is for system containing two elements connected in parallel (degree of

redundancy = 1). The dependencies 3, 4 and 5 are for systems containing respectively 3, 4 and

5 elements connected in parallel (with increasing levels of redundancy). Note that even in this

most simple case the following major biodemographic phenomena are observed: (1) the

emergence of aging as the system becomes redundant; (2) the increase in apparent aging rate

with increasing levels of system redundancy; (3) the compensation law of mortality (mortality

convergence), and (4) late-life mortality deceleration and levelling-off to mortality plateau.

Additional explanations and comments are provided in the text of the paper.

Figure 4. The dependence of the logarithm of mortality force (failure rate) on age (computer

simulation test). Note that at early ages (20-60 years) the data simulated with the binomial law

of mortality (µ = b(x0 + x)n) are very close to the linear relationship corresponding to the

Gompertz law: µ = Reαx. At older ages, however, mortality deceleration is observed, i.e., the

mortality rates are increasing with age at a slower pace compared to the Gompertz law

(straight line on a semi-log scale). The parameters of the binomial law of mortality in this

illustrative example are: x0 = 100 years; n = 10; b = 10-24 years-11. Although the choice of

parameters is arbitrary in this computer simulation, the obtained mortality trajectory proved to

be very close to actual trajectory observed for human populations (see Gavrilov & Gavrilova,

1991, p.150).
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Way of system creation

Machines: Assembly by macroscopic
agents (humans)

Organisms: Self-assembly from molecules
and cells

Restrictions to the size of
components

Machines: Tendency to
macroscopicity

Organisms: Tendency to
microscopicity (DNA,
proteins, cells)

Opportunities to pretest
components (external quality
control)

Machines: Practically unlimited
Organisms: Practically impossible

Degree of element
miniaturization

Machines: Relatively
low

Organisms: Extremely
high

Demand for high
initial quality of
each element

Machines: Very high
Organisms: Relatively

low

Expected system
'littering' with
initial defects

Machines: Low
Organisms: High

Limitations to the total
number of elements in
a system

Machines: Very strict
limitations

Organisms: Limitations
are not strict

Expected system
redundancy

Machines: Relatively
low

Organisms: Very high

Demand for high
redundancy to be
operational

Machines: Relatively
low

Organisms: Very high

Figure 1.



Gavrilov L.A. “Biodemographic (Reliability) Theory of Aging and Longevity

51

Figure 2
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Failure Rate as a Function of Age
in Systems with Different Redundancy Levels

Age, in dimensionless units (kx), log scale
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