
I. Introduction

There is growing interest in scientific
explanations of aging and in the search
for a general theory that can explain what
aging is and why and how it happens.

There is also a need for a general
theoretical framework that would allow
researchers to handle an enormous
amount of diverse observations related to
aging phenomena. Empirical observations
on aging have become so abundant that a
special four-volume encyclopedia, The
Encyclopedia of Aging (1,591 pages), is
now required for even partial coverage of
the accumulated facts (Ekerdt, 2002). To
transform these numerous and diverse
observations into a comprehensive body
of knowledge—a general theory of species
aging and longevity—is required.

The prevailing research strategy now is
to focus on the molecular level in the
hopes of understanding the proverbial
nuts and bolts of the aging process. In
accordance with this approach, many
aging theories explain the aging of organ-

isms through the aging of organism com-
ponents. However, this circular reasoning
of assuming aging in order to “explain”
aging eventually leads to a logical dead
end because when moving in succession
from the aging of organisms to the aging
of organs, tissues, and cells, we eventually
come to atoms, which are known not
to age. A situation with non-aging com-
ponents exists not only at the level of
atoms, but it may also be observed at
higher levels of system organization when
its components fail at random with a con-
stant risk of failure independent on age.
Even such complex biological structures
as cells may sometimes demonstrate a
non-aging behavior when their loss fol-
lows a simple law of radioactive decay
(Burns et al., 2002; Clarke et al., 2000,
2001a,b; Heintz, 2000).

Thus, we come to the following basic
question on the origin of aging: How can
we explain the aging of a system built of
non-aging elements?

This question invites us to start think-
ing about the possible systemic nature of
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aging and to wonder whether aging may
be a property of the system as a whole. In
other words, perhaps we need to broaden
our vision and be more concerned with
the bigger picture of the aging phenom-
enon rather than its details.

To illustrate the need for a broad vision,
consider the following questions:

• Would it be possible to understand a
newspaper article by looking at it
through an electronic microscope?

• Would the perception of a picture in
an art gallery be deeper and more
comprehensive at the shortest possible
distance from it?

Evolutionary perspective on aging and
longevity is one way to stay focused
on the bigger picture (see recent reviews
by Charlesworth, 2000; Gavrilova &
Gavrilov, 2002; Martin, 2002; Partridge
& Gems, 2002). Evolutionary explana-
tions of aging and limited longevity of
biological species are based on two
major evolutionary theories: the muta-
tion accumulation theory (Charlesworth,
2001; Medawar, 1946) and the antagonis-
tic pleiotropy theory (Williams, 1957).
These two theories can be briefly sum-
marized as follows:

1. Mutation accumulation theory:
From the evolutionary perspective,
aging is an inevitable result of the
declining force of natural selection
with age. For example, a mutant gene
that kills young children will be
strongly selected against (will not be
passed to the next generation), whereas
a lethal mutation that affects only
people over the age of 80 will experience
no selection because people with this
mutation will have already passed it on
to their offspring by that age. Over
successive generations, late-acting
deleterious mutations will accumulate,
leading to an increase in mortality rates
late in life.

2. Antagonistic pleiotropy theory:
Late-acting deleterious genes may even
be favored by selection and be actively
accumulated in populations if they have
beneficial effects early in life.

Note that these two theories of aging
are not mutually exclusive, and both
evolutionary mechanisms may operate at
the same time. The main difference
between the two theories is that in the
mutation accumulation theory, genes
with negative effects at old age accumu-
late passively from one generation to
the next, whereas in the antagonis-
tic pleiotropy theory, these genes are
actively kept in the gene pool by selec-
tion (Le Bourg, 2001). The actual relative
contribution of each evolutionary mech-
anism to species aging has not yet been
determined, and this scientific problem
is the main focus of current research
in evolutionary biology.

Evolutionary theories demonstrate
that taking a step back from too-close
consideration of the details over the
“nuts and bolts” of the aging process
helps us to gain a broader vision of the
aging problem. The remaining question
is whether the evolutionary perspective
represents the ultimate general theo-
retical framework for explanations of
aging. Or perhaps there may be even
more general theories of aging, one step
further removed from the particular
details?

The main limitation of evolutionary
theories of aging is that they are applica-
ble only to systems that reproduce them-
selves, because these theories are based
on the idea of natural selection and the
notion of declining force of natural selec-
tion with age.

However, aging is a very general
phenomenon—it is also observed in tech-
nical devices (such as cars), which do
not reproduce themselves in a sexual or
any other way and which are, therefore,
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not subject to evolution through natu-
ral selection. For this simple reason,
the evolutionary explanation of aging
based on the idea of declining force of
natural selection with age is not appli-
cable to aging technical devices. Thus,
there may be a more general explanation
of aging, beyond mutation accumulation
and antagonistic pleiotropy theories.

The quest for a general explanation
of aging (age-related increase in failure
rates), applicable both to technical devices
and biological systems, invites us to con-
sider the general theory of systems fail-
ure known as reliability theory (Barlow
& Proschan, 1975; Barlow et al., 1965;
Gavrilov, 1978; Gavrilov & Gavrilova,
1991, 2001b, 2003b, 2004b,c; Gavrilov
et al., 1978).

Reliability theory was historically
developed to describe the failure and
aging of complex electronic (military)
equipment, but the theory itself is a
very general theory based on mathemat-
ics (probability theory) and a systems
approach (Barlow & Proschan, 1975;
Barlow et al., 1965). The theory may
therefore also be useful in describing and
understanding the aging and failure of
biological systems. It may be useful in
several ways: first, by providing a kind of
scientific language (definitions and cross-
cutting principles), helping researchers
create a logical framework for organizing
numerous and diverse observations on
aging into a coherent picture. Second, it
helps researchers develop an intuition
and understanding of the main principles
of the aging process through consider-
ation of simple mathematical models,
having some features of a real world.
Third, reliability theory is useful for gen-
erating and testing specific predictions,
as well as deeper analyses of already col-
lected data. The purpose of this chapter
is to review some applications of reliabil-
ity theory to the problem of biological
aging.

II. General Overview of the
Reliability Theory Approach

Reliability theory is a body of ideas, math-
ematical models, and methods aimed at
predicting, estimating, understanding, and
optimizing the life span and failure distri-
butions of systems and their components
(adapted from Barlow & Proschan, 1975).
Reliability theory allows researchers to
predict the age-related failure kinetics for
a system of given architecture (reliability
structure) and given reliability of its com-
ponents.

A. Definition of Aging and Non-Aging
Systems

A reliability-engineering approach to
biological aging is appealing because it
provides a common scientific language
(general framework) for scientists work-
ing in different areas of aging research,
helping to overcome disruptive special-
ization and allowing researchers to
understand each other.

Specifically, reliability theory helps
researchers define more clearly what is
aging. In reliability theory, aging is
defined as a phenomenon of increasing
risk of failure with the passage of time
(age). If the risk of failure is not increas-
ing with age (the “old is as good as new”
principle), then there is no aging in
terms of reliability theory, even if the
calendar age of a system is increasing.
For example, clocks that count time
perfectly are not aging according to reli-
ability theory (although they have a per-
fect “biomarker” for their continuous
age changes—a displayed time and date).
Thus, the regular and progressive
changes over time per se do not consti-
tute aging unless they produce some
deleterious outcome (failures). In terms
of reliability theory, the dating problem
of determining the system age (time
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elapsed since system creation) is differ-
ent from the performance assessment
problem of a system’s aging (old becom-
ing not as good as new). Perfect clocks
having an ideal marker of their increas-
ing age (time readings) are not aging, but
progressively failing clocks are aging
(although their “biomarkers” of age at
the clock face may stop at a “forever
young” date).

Moving to a biological example, we
can say that the formation of regular sea-
sonal tree rings tells us everything about
tree age but little about tree aging.
Moreover, a progressive disruption of the
healthy formation of tree rings would
indicate tree aging (although this disrup-
tion obscures the determination of tree
age). In terms of reliability theory, the
“biomarkers” of age used in forensics to
estimate human ages may have nothing
to do with human aging, no matter how
accurate these “biomarkers” are in calen-
dar age prediction. For example, an aspar-
tate racemization in the teeth may be
ideal for age estimation but not necessar-
ily informative for predicting an increas-
ing risk of death or other types of failure.
On the other hand, loss of motor neurons
with age would be highly relevant to
the problem of human aging, no matter
how poorly this loss is correlated with a
person’s age. These examples illustrate
a fundamental difference between bio-
markers of age (focused on the dating
problem of accurate age determination)
and biomarkers of aging (focused on the
performance problem of system deterio-
ration over time).

Thus, reliability theory helps to resolve
a confusion that existed in biological aging
research when some really important
changes related to system deterioration
over time were not properly discriminated
from other neutral or benign changes
closely correlated with calendar age.
Reliability theory helps to clarify the dif-
ference between age (the passage of
time) and aging (deterioration with age)—

concepts that are often confused with each
other.1

In terms of reliability theory, it is con-
ceivable to imagine at least theoretically
that some biological species may not
demonstrate aging in certain conditions,
although their age is always increasing.
“Anti-aging” intervention, according to
reliability theory, is not an oxymoron
incompatible with the laws of Nature
(reversing time), but rather refers to any
feasible intervention that delays or pre-
vents “the old becoming not as good as
new.” Later we will show that non-aging
systems are common both in reliability
theory and in the real physical world, so
becoming old is not synonymous with
aging.

B. Notion of System’s Failure

The concept of failure is important to the
analysis of a system’s reliability. In reliabil-
ity theory, failure is defined as the event
when a required function is terminated
(Rausand & Høyland, 2003). In other words,
failure occurs when the system deviates
from the optimistically anticipated and
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1The term aging is commonly used by
biogerontologists and the public as a synonym
to the word senescence (progressive
deterioration with age). This interpretation of
aging fits well with the reliability-theory
approach, although the term senescence itself
is not common in reliability theory. The
problem with the term senescence is that it
focuses too narrowly on old ages, when the
senescent phenotypes become apparent
(e.g., frailty). The term aging is more inclusive
because it covers any age-related decline in
performance, even if its starts early in life
(e.g., an increase in human death rates after age
15). See also the second chapter of this book for
a critique of other too-broad definitions of
aging (Masoro, 2005). It remains to be seen
whether the reliability-theory definition of
aging will be universally accepted in the future
or will be limited to its use in a specialized way
as presented in this chapter.
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desired behavior (it “fails”). Failures are
often classified in two groups:

1. Degradation failures, where the
system or component no longer functions
properly, and

2. Catastrophic or fatal failures—the
end of a system’s or a component’s life.

Examples of degradation failures in
humans would be an onset of different
types of health impairments, diseases, or
disabilities, whereas catastrophic or fatal
failures obviously correspond to death.
The notions of aging and failure are
related to each other in the following
way: when the risk of failure outcomes
increases with age (“old is not as good as
new”), this is aging by definition. Note
that according to reliability theory, aging
is not just growing old; instead, aging is a
degradation leading to failure (adverse
health outcomes)—becoming sick, dis-
abled, frail, and dead. Therefore, from a
reliability-theory perspective, the notion
of healthy aging is an oxymoron, like a
healthy dying or a healthy disease. More
appropriate terms instead of healthy
aging, successful aging, or aging well
would be delayed aging, postponed
aging, slow aging, arrested aging, negligi-
ble aging (senescence), or, hopefully,
aging reversal.

Because the reliability definition of bio-
logical aging is linked to health fail-
ures (adverse health outcomes, including
death), aging without diseases is just as
inconceivable as dying without death.
Diseases and disabilities are an integral
part (outcomes) of the aging process. Not
every disease is related to aging, but every
progression of disease with age has some
relevance to aging: aging is a “maturation”
of diseases with age. A more detailed dis-
cussion of the relationship between aging
and diseases is provided in the second
chapter of this book (Masoro, 2005).

Reliability theory also allows us to
introduce more “physiological” defini-
tions of failure that are not limited to such

failure outcomes as disease, disability, and
death but describe a failure in performance
tests for speed, strength, endurance, and so
on. For example, it is possible to study the
age dynamics of failure in sports competi-
tions (marathon records, etc.), thereby
making use of rich sports records for the
purpose of scientific research on aging.
Thus, reliability theory may be useful in
studying “physiological” aging too.

Note that a system may have an aging
behavior for one particular type of fail-
ure, but it may remain as good as new for
some other type of failure. Thus, the
notion of aging is outcome-specific—it
requires specifying a particular type of
failure (or group of failures) via which the
system deteriorates.

Consequently, legitimate anti-aging
interventions may be outcome-specific
too, and limited to postponing some spe-
cific adverse health outcomes. Aging is
likely to be a summary term for many
different processes leading to various
types of degradation failures, and each of
these processes deserves to be studied
and prevented.2
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2One may wonder whether hip replacement
surgery would qualify as an “anti-aging
intervention” according to its description
here. The answer to this question is not as
simple as the question itself. It is conceivable
that hip replacement therapy may prevent
some patients from physical inactivity, stress,
depression, loss of appetite, malnutrition, and
drug overuse. The result may be that further
progression of some diseases and disabilities
could indeed slow down compared to patients
who did not receive this treatment. In this
case we can say that hip replacement therapy
helps to oppose aging for some specific types
of degradation failures in a particular group of
patients (very limited anti-aging effect). It is
true, however, that the term anti-aging
intervention is usually associated with hopes
for something far more radical, such as aging
reversal in the future, applicable to all older
people.
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C. Basic Ideas and Formulas of
Reliability Theory

Reliability of the system (or its compo-
nent) refers to its ability to operate prop-
erly according to a specified standard
(Crowder et al., 1991). Reliability is
described by the reliability function S(x),
which is the probability that a system (or
component) will carry out its mission
through time x (Rigdon & Basu, 2000).
The reliability function (also called the
survival function) evaluated at time x is
just the probability, P, that the failure
time X is beyond time x, P(X � x). Thus,
the reliability function is defined as
follows:

S(x) � P (X � x) � 1 � P (X � x)
� 1 � F (x)

where F(x) is a standard cumulative dis-
tribution function in the probability the-
ory (Feller, 1968). The best illustration
for the reliability function S(x) is a sur-
vival curve describing the proportion of
those still alive by time x (the lx column
in life tables).

Failure rate, �(x), or instantaneous risk
of failure, also called the hazard rate, h(x),
or mortality force, is defined as the rela-
tive rate for reliability function decline:

In those cases when the failure rate is
constant (does not increase with age), we
have a non-aging system (component)
that does not deteriorate (does not fail
more often) with age:

�(x) � k � const

The reliability function of non-aging sys-
tems (components) is described by the
exponential distribution:

S(x) � S0e�kx

�(x) � �
dSx

Sxdx
� �

d lnSx

dx

This failure law describes “life span” dis-
tribution of atoms of radioactive elements
and, therefore, is often called an exponen-
tial decay law. Interestingly, this failure
law is observed in many wild populations
with high extrinsic mortality (Finch, 1990;
Gavrilov & Gavrilova, 1991). This kind of
distribution is observed if failure (death)
occurs entirely by chance, and it is also
called a “one-hit model” or a “first order
kinetics.” The non-aging behavior of a sys-
tem can be detected graphically when
the logarithm of the survival function
decreases with age in a linear fashion.

Recent studies found that at least some
cells in the aging organism might demon-
strate a non-aging behavior.3 Specifically,
the rate of neuronal death does not
increase with age in a broad spectrum
of aging-related neurodegenerative condi-
tions (Heintz, 2000). These include 12
different models of photoreceptor degener-
ation, “excitotoxic” cell death in vitro,
loss of cerebellar granule cells in a mouse
model, and Parkinson’s and Huntington’s
diseases (Clarke et al., 2000). In this range
of diseases, five different neuronal types
are affected. In each of these cases, the
rate of cell death is best fit by an expo-
nential decay law with constant risk of
death independent of age (death by chance
only), arguing against models of progres-
sive cell deterioration and aging (Clarke
et al., 2000, 2001a). An apparent lack of
cell aging is also observed in the case
of amyotrophic lateral sclerosis (ALS)
(Clarke et al., 2001a), retinitis pigmentosa
(Burns et al., 2002; Clarke et al., 2000,
2001a; Massoff et al., 1990), and idio-
pathic Parkinsonism (Calne, 1994; Clarke
et al., 2001b; Schulzer et al., 1994).

6 L. A. Gavrilov and N. S. Gavrilova

3Non-aging behavior of cells should not be
confused with cells’ immortality or their
ability to self-replicate indefinitely. Instead
non-aging behavior means that the risk of cell
death (or loss of function) does not depend on
cell age.
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These observations correspond well
with another observation that “an impres-
sive range of cell functions in most organs
remain unimpaired throughout the life
span” (Finch, 1990, p. 425). These unim-
paired functions might reflect the “no-
aging” property known as “old as good
as new” in survival analysis (Klein &
Moerschberger, 1997, p. 38). Thus, we
come again to the following fundamental
question about the origin of aging: how
can we explain the aging of a system built
of non-aging elements? This question
invites us to think about the possible sys-
temic nature of aging and to wonder
whether aging may be a property of the
system as a whole. We would again like to
emphasize the importance of looking at
the bigger picture of the aging phenome-
non in addition to its details, and we will
suggest a possible answer to the posed
question later in this chapter.

If failure rate increases with age, we
have an aging system (component) that
deteriorates (fails more often) with age.
There are many failure laws for aging sys-
tems, and the most famous one in biology
is the Gompertz law with exponential
increase of the failure rates with age,
which is observed for many biological
species including humans (Finch, 1990;
Gavrilov & Gavrilova, 1991; Gompertz,
1825; Makeham, 1860; Strehler, 1978):

where x is age, while R and � are positive
parameters.

We will show later that there are some
exceptions to the Gompertz law and that
it is usually applicable within some age
windows rather than the entire range of
all possible ages.

According to the Gompertz law, the
logarithm of failure rates increases lin-
early with age. This is often used in order
to illustrate graphically the validity of the
Gompertz law—the data are plotted in the
semi-log scale (known as the Gompertz

�(x) � Re�x

plot) to check whether the logarithm of
the failure rate is indeed increasing with
age in a linear fashion.

For technical systems, one of the most
popular models for the failure rate of
aging systems is the Weibull model, the
power-function increase in failure rates
with age x (Weibull, 1939):

�(x) � axb

for x � 0, where a, b � 0
This law was suggested by Swedish

engineer and mathematician Waloddi
Weibull in 1939 to describe the strength
of materials (Weibull, 1939). It is widely
used to describe the aging and failure of
technical devices (Barlow & Proschan,
1975; Rigdon & Basu, 2000; Weibull,
1951). According to the Weibull law, the
logarithm of failure rate increases lin-
early with the logarithm of age, with a
slope coefficient equal to parameter b.
This is often used in order to illustrate
graphically the validity of the Weibull
law: the data are plotted in the log-log
scale (known as the Weibull plot) to
check whether the logarithm of the fail-
ure rate is indeed increasing with the log-
arithm of age in a linear fashion.

Both the Gompertz and the Weibull
failure laws have their fundamental
explanation rooted in reliability theory
(Barlow & Proschan, 1975) and are the
only two theoretically possible limiting
extreme value distributions for systems
whose life spans are determined by the
first failed component (Galambos, 1978;
Gumbel, 1958). In other words, as the
system becomes more and more complex
(contains more vital components, each
being critical for survival), its life span
distribution may asymptotically approach
one of the only two theoretically possible
limiting distributions—either Gompertz
or Weibull (depending on the early kinet-
ics of failure of system components). The
two limit theorems in the statistics
of extremes (Galambos, 1978; Gumbel,
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1958) make the Gompertz and the
Weibull failure laws as fundamental as
are some other famous limiting distribu-
tions known in regular statistics, such as
the normal distribution and the Poisson
distribution. It is puzzling, however, why
organisms prefer to die according to the
Gompertz law, whereas technical devices
typically fail according to the Weibull
law. One possible explanation of this
mystery is suggested later in this chapter.

Because of their fundamental impor-
tance for describing mortality kinetics, it
may be interesting and useful to compare
these two failure laws and their behavior.
Figure 1.1A presents the dependence of
the logarithm of the failure rate on age
(Gompertz plot) for the Gompertz and
the Weibull functions. Note that this
dependence is strictly linear for the
Gompertz function (as expected) and is
concave-down for the Weibull function.
So the Weibull function looks as if it is
decelerating with age when compared to
the Gompertz function.

Figure 1.1B presents the dependence of
the logarithm of the failure rate on the
logarithm of age (Weibull plot) for the
Gompertz and the Weibull functions.
Note that this dependence is strictly lin-
ear for the Weibull function (as antici-
pated) and is concave-up for the Gompertz
function. So the Gompertz function looks
as if it is accelerating with the logarithm
of age when compared to the Weibull
function.

This simple graphical method of data
analysis is useful in practice because it
allows researchers to determine easily
whether particular data follow the
Gompertz law or the Weibull law (or
neither).

Two fundamental differences exist
between the Weibull and the Gompertz
functions. First, the Weibull function
states that the system is immortal at
starting age: when age x is equal to zero,
the failure rate is equal to zero too,
according to the Weibull formula. This
means that the system should be initially
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Figure 1.1 Comparison of the Gompertz and the Weibull functions in different coordinates. (A) Semi-log
(Gompertz) coordinates. In this case, the Gompertz function produces a straight line, whereas the Weibull
function generates a concave-down curve. (B) Log-log (Weibull) coordinates. In this case, the Weibull func-
tion produces a straight line, whereas the Gompertz function generates a concave-up curve. By plotting the
death rate data in these coordinates, it is possible to determine graphically which particular formula pro-
vides the best fit (a better straight line) for the empirical data.
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ideal (immortal) in order for the Weibull
law to be applicable to it.

On the contrary, the Gompertz func-
tion states that the system is already vul-
nerable to failure at starting age: when
age x is equal to zero, the failure rate is
already above zero, equal to parameter R
in the Gompertz formula. This means
that partially damaged systems having
some initial damage load are more likely
to follow the Gompertz failure law,
whereas initially perfect systems are
more likely to follow the Weibull law.
This profound difference between the
two models is often obscured in real life
by the period of initially high and then
decreasing juvenile mortality that could
not be explained by either model.

Second, there is a fundamental differ-
ence between the Gompertz and the
Weibull functions regarding their response
to misspecification of the starting age
(“age zero”). This is an important issue
because in biology there is an ambiguity
regarding the choice of a “true” age, when
aging starts. Legally, it is the moment of
birth, which serves as a starting moment
for age calculation. However, from a bio-
logical perspective, there are reasons to
consider a starting age as a date either well
before the birth date (the moment of con-
ception in genetics, or a critical month of
pregnancy in embryology), or long after
the birth date (the moment of maturity,
when the formation of a body is finally
completed).

From a demographic perspective, the
starting age at which aging begins is
when death rates are the lowest and start
to grow—this is about 10 years of age for
humans. The uncertainty in starting age
has very different implications for data
analysis with the Gompertz and the
Weibull functions. For the Gompertz
function, misspecification of starting age
is not as important because the shift in
the age scale will still produce the same
Gompertz function with the same slope
parameter, �. The data generated by the

Gompertz function with different age
shifts will all be linear and parallel to
each other in the Gompertz plot.

The situation is very different for the
Weibull function: it is linear in the
Weibull plot for only one particular start-
ing age, and any shifts in starting age pro-
duce a different function. Specifically, if a
“true” starting age is larger than assumed,
the resulting function will be a nonlinear
concave-up curve in the Weibull plot, indi-
cating model misspecification and leading
to a bias in estimated parameters. Thus,
researchers choosing the Weibull function
for data analysis first have to resolve an
uneasy biological problem: at what age
does aging start?

An alternative graceful mathematical
solution to this problem would be to
move from a standard two-parameter
Weibull function to a more general three-
parameter Weibull function, which has an
additional “location parameter” � (Clark,
1975):

�(x) � a(x � �)b

for x � �, and �(x) is equal to zero other-
wise.

Parameters of this formula, including
the location parameter �, could be esti-
mated from the data through standard
fitting procedures, thus providing a
computational answer to the question
“when does aging start?” However, this
computational answer might be shock-
ing to researchers unless they are famil-
iar with the concept of initial damage
load (Gavrilov & Gavrilova, 1991;
2001b; 2004a), which will be discussed
later.

In addition to the Gompertz and the
standard two-parameter Weibull laws, a
more general failure law was suggested
and theoretically justified using the sys-
tem reliability theory. This law is known
as the binomial failure law (Gavrilov &
Gavrilova, 1991; 2001b), and it represents
a special case of the three-parameter
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Weibull function with a negative loca-
tion parameter:

�(x) � a(x0 	 x)b

The parameter x0 in this formula is
called the initial virtual age of the sys-
tem (IVAS) (Gavrilov & Gavrilova, 1991,
2001b). This parameter has the dimen-
sion of time and corresponds to the age
by which an initially ideal system would
have accumulated as many defects as a
real system already has at the starting
age (at x � 0). In particular, when the
system is initially undamaged, the initial
virtual age of the system is zero, and the
failure rate grows as a power function of
age (the Weibull law). However, as the
initial damage load increases, the failure
kinetics starts to deviate from the
Weibull law, and eventually it evolves to
the Gompertz failure law at high levels
of initial damage load. This is illustrated
in Figure 1.2, which represents the
Gompertz plot for the data generated by
the binomial failure law with different
levels of initial damage load (expressed in
the units of initial virtual age).

Note that as the initial damage load
increases, the failure kinetics evolves
from the concave-down curves typical of
the Weibull function to an almost linear
dependence between the logarithm of fail-
ure rate and age (the Gompertz function).
Thus, the binomial failure law unifies two
different classes of distribution. The bio-
logical species dying according to the
Gompertz law may have a high initial
damage load, presumably because of
developmental noise, and a clonal expan-
sion of mutations that occurred in the
early development (Gavrilov & Gavrilova,
1991, 2001b, 2003a, 2004a).

The concept of initial virtual age could
be practically useful in analysis and inter-
pretation of survival data because it
allows us to take into account the initial
damage load of the system when observa-
tions start. Moreover, this concept allows
us to estimate the initial damage load

from experimental data through fitting
procedures.

D. System Reliability and the Concept
of Reliability Structure

A branch of reliability theory that studies
reliability of an entire system given
reliability of its components and its com-
ponents’ arrangement (reliability struc-
ture) is called system reliability theory
(Rausand & Høyland, 2003). System relia-
bility involves the study of the overall
performance of systems of interconnected
components. The main objective of sys-
tem reliability is the construction of a
model that represents the times-to-failure
of the entire system based on the life
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Figure 1.2 Failure kinetics of systems with different
levels of initial damage. Dependence 1 is for an ini-
tially ideal system (with no damage load). Dependence
2 is for a system with an initial damage load equivalent
to damage accumulated by a 20-year-old system.
Dependencies 3 and 4 are for systems with an initial
damage load equivalent to damage accumulated
respectively by a 50-year-old system and a 100-year-old
system. Note that high initial damage load transforms
the Weibull curve into the Gompertz-like straight line.

1. The Weibull curve for initially ideal systems,
�(x) � ax10, a � 10�24 year�1 Graphs for initially
damaged systems:

2. �(x) � a(20 	 x)10

3. �(x) � a(50 	 x)10

4. �(x) � a(100 	 x)10

Adapted from Gavrilov & Gavrilova, 2004c.
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distributions of the components from
which it is composed. Consideration of
some basic ideas and models of the
system reliability theory is important
because living organisms may be repre-
sented as structured systems comprised of
organs, tissues, and cells.

System reliability theory tells us that
how components are arranged strongly
affects the reliability of the whole system.
The arrangement of components that are
important for system reliability is also
called reliability structure and is graphi-
cally represented by a schema of logical
connectivity. It is important to understand
that the model of logical connectivity
focuses only on those components that are
relevant for the functioning ability of the
system. If the components do not play a
direct role in a system’s reliability, they
usually are not included in the analyzed
reliability structure (Rausand & Høyland,
2003). For example, organs of vision are
not included in the reliability structure of
a living organism if death is the only type
of failure to be analyzed (complete failure
of vision does not cause an immediate
death of the organism). On the other hand,
if disability is the type of failure under
consideration, then organs of vision
should be included in the schema of relia-
bility structure. Therefore, reliability
structure does not necessarily reflect a
physical structure of the object.

There are two major types of component
arrangement (connection) in the system:
components connected in series and com-
ponents connected in parallel (Rausand &
Høyland, 2003). Here we consider a simple
system of n statistically independent com-
ponents, where failure of one component
does not affect the failure rate of other
components of the system.

1. Components Connected in Series

For a system of n independent compo-
nents connected in series, the system fails
if any one of the components fails, much
like electrical circuits connected in series.

Thus, the failure of any one component
results in the failure of the whole system,
such as in Christmas tree lighting chains.
Figure 1.3A shows a schema of the logical
connectivity of the system in series.

This type of system is also called a
weakest-link system (Ayyub & McCuen,
2003). In living organisms, many organs
and tissues (heart, lung, liver, brain)
are vital for the organism’s survival,
making them a good example of a series-
connected component. Thus, the series
connection indicates a logical connectivity
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Figure 1.3 Logical schemas of systems with differ-
ent types of elements connectivity. (A) A system
connected in series. (B) A system connected in par-
allel. (C) A series-parallel system with equal redun-
dancy of system components. (D) A series-parallel
system with distributed redundancy.
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If failure rates of all components are equal,
the failure rate of the system with n com-
ponents is n�. It follows from this formula
that if a system’s components do not age
(�n � const), the entire system connected
in series does not age either.

2. Components Connected in Parallel

A parallel system of n independent compo-
nents fails only when all the components
fail (such as in electrical circuits connected
in parallel). The logical structure of a paral-
lel system is presented in Figure 1.3B.

An example of a parallel system is a
system with components performing an
identical function. This function will be
destroyed only when all the components
fail. The number of additional compo-
nents with the same function in a parallel
structure is called a redundancy or a
reserve of the system. In living organ-
isms, vital organs and tissues (such as the
liver, kidney, or pancreas) consist of
many cells performing one and the same
specialized function. A recessive deleteri-
ous mutation leading to a failure of a
diploid organism represents a classic
example of two components (alleles) con-
nected in parallel.

For a parallel system with n independ-
ent components, the probability of a
system’s failure, Q, is a product of prob-
abilities of failure for its components, q:

Qs � q1q2 . . . qn
� (1 � p1)(1 � p2) . . . (1 � pn)

Hence, the reliability of a parallel sys-
tem, Ss, is related to the reliability of its
components in the following way:

Ss � 1 � Qs � 1 � (1 � p1)(1 � p2) . . .
(1 � pn)

The reliability of a parallel system with
components of equal reliability, p, is:

Ss � 1 � (1 � p)n

12 L. A. Gavrilov and N. S. Gavrilova

but not necessarily a physical or an
anatomical one. For example, a domi-
nant deleterious mutation leading to a
failure of a diploid organism corresponds
to a schema of two components (alleles)
connected in series (in terms of logical
connectivity), although in fact these
alleles are physically located at two dif-
ferent homologous chromosomes.

The reliability of a system in series
(with independent failure events of the
components), Ss, is a product of the relia-
bilities of its components:

Ss � p1p2 . . . pn

where p1 . . . pn are the reliabilities of the
system’s components.

This formula explains why complex sys-
tems with many critical components are
so sensitive to early failures of their com-
ponents. For example, for a system built of
458 critical components, the initial period
of a component’s life when its cumulative
risk of failure is only 1 percent corre-
sponds to the end of a system’s life, when
99 percent of systems have already failed.
In other words, by the age when 99 per-
cent of components are still functional
(p � 0.99), a system built of 458 such criti-
cal components has only a 1 percent
chance of remaining functional: Ps �
(0.99)458 � 0.01. This discrepancy between
the lifetimes of systems and the lifetimes
of their components is increasing further
with growing system complexity (num-
bers of critical components). Therefore,
the early failure kinetics of components is
very important in determining the failure
kinetics of a complex system for almost
its entire life. This helps simplify the
analysis of complex system failure by
focusing on the early failure kinetics of
system components.

The failure rate of a system connected
in series is a sum of failure rates of its
components (Barlow et al., 1965):

�s � �1 	 �2 	 . . . 	 �n
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What is important here is the emergence
of aging in parallel systems: a parallel
system is aging even if it is built of non-
aging components with a constant failure
rate (see more details in Section IV).

In the real world, most systems are
more complex than simply series and
parallel structures, but in many cases
they can be represented as combinations
of these structures.

3. More Complex Types of Reliability
Structures

The simplest combination of the two
reliability structures is a series-parallel
system with equal redundancy, shown in
Figure 1.3C.

A general series-parallel system is a sys-
tem of m subsystems (blocks) connected
in series, where each block is a set of n
components connected in parallel. It turns
out that even if the components them-
selves are not aging, the system as a whole
has an aging behavior—its failure rate
grows with age according to the Weibull
law and then levels off at advanced
ages (Gavrilov & Gavrilova, 1991, 2001b,
2003b). This type of system is important
to consider because a living organism can
be presented as a system of critical vital
organs and tissues connected in series,
while each organ consists of specialized
cells connected in parallel. The reliability
model for this type of system is described
in more detail in Section IV.

Another type of reliability structure, a
series-parallel system with distributed
redundancy, was introduced by Gavrilov
and Gavrilova (1991). The series-connected
blocks of this system have non-equal
redundancy (different numbers of elements
connected in parallel), and the elements
are distributed between the system’s
blocks according to some particular distri-
bution law (see Figure 1.3D).

Gavrilov and Gavrilova (1991, 2001b)
studied the reliability and failure rate of
series-parallel systems with distributed

redundancy for two special cases: (1) the
redundancy distributed within an organ-
ism according to the Poisson law or
(2) according to the binomial law. They
found that the failure rate of such systems
initially grows according to the Gompertz
law (in the case of the Poisson distributed
redundancy) or binomial failure law (in
the case of the binomially distributed
redundancy). At advanced ages, the failure
rate for both systems asymptotically
approaches an upper limit (mortality
plateau). Reliability models for these sys-
tems are described in Section VI.

Now when the basic concepts of relia-
bility theory are discussed, we may
proceed to link them to empirical obser-
vations on aging and mortality.

III. Mortality, Failure, and Aging
in Biological and Technical

Systems
A. Failure Kinetics in Biological and

Technical Systems

There is a striking similarity between
living organisms and technical devices in
the general age pattern of their failures—
in both cases, the failure rate usually fol-
lows the so-called “bathtub curve” (see
Figure 1.4).

The bathtub curve of failure rate is a
classic concept presented in many text-
books on reliability theory (Ayyub &
McCuen, 2003; Barlow & Proschan, 1975;
Rausand & Høyland, 2003). The curve
consists of three periods. Initially, the fail-
ure rates are high and decrease with age.
This period is called the “working-in”
period, and the period of “burning-out” of
defective components. For example, the
risk for a new computer to fail is often
higher at the very start, but then those
computers that did not fail initially work
normally afterwards. The same period
exists early in life for most living organ-
isms, including humans, and it is called
the infant mortality period.
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Then follows the second period, called
the normal working period, corresponding
to an age of low and approximately con-
stant failure rates. This period also exists
in humans, but unfortunately it is rather
short (10 to 15 years) and ends too soon.4

Then the third period, the aging period,
starts, which involves an inexorable rise

in the failure rate with age. In most living
organisms, including humans, this rise in
failure rates follows an explosive expo-
nential trajectory (the Gompertz curve).
For humans, the aging period lies approxi-
mately within the interval of 20 to
100 years.

Thus, there is a remarkable similarity
in the failure patterns of technical and
biological systems. This similarity is
reinforced further by the fact that at
extreme old ages there is a fourth period
common to both technical devices and
living organisms (Economos, 1979, 1980,
1983, 1985). This period is known in
biology as a period of late-life mortality
leveling-off (Carey & Liedo, 1995;
Clark & Guadalupe, 1995; Economos,
1979; Fukui et al., 1993, 1996; Vaupel et
al., 1998), and also as the late-life mortal-
ity deceleration law (Fukui et al., 1993,
1996; Khazaeli et al., 1996; Partridge &
Mangel, 1999).

Remarkably similar failure patterns of
biological and technical systems indicate
that there may be some very general
principles of system aging and failure
(which will be discussed later), despite
the obvious differences in specific under-
lying mechanisms of aging.

B. Mortality Laws in the Biology
of Life Span

Attempts to develop a fundamental quan-
titative theory of aging, mortality, and life
span have deep historical roots. In 1825,
the British actuary Benjamin Gompertz
discovered a law of mortality (Gompertz,
1825) known today as the Gompertz law
(Finch, 1990; Gavrilov & Gavrilova, 1991;
Olshansky & Carnes, 1997; Strehler,
1978). Specifically, he found that the force
of mortality increases in geometrical pro-
gression with the age of adult humans.
According to the Gompertz law, human
mortality rates double about every 8 years
of adult age (Finch, 1990; Gavrilov &
Gavrilova, 1991; Gompertz, 1825;
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Figure 1.4 “Bathtub” mortality curves for humans
and fruit flies. Mortality rates (vertical axis) are cal-
culated in identical units (deaths per day per indi-
vidual) for both species, whereas the age scale
(horizontal axis) is normalized by dividing by the
median life span of the species to allow data com-
parison (a similar approach to age scaling was used
by Pearl & Miner, 1935, and Carnes et al., 1998).
Mortality for Drosophila melanogaster was calcu-
lated using data published by Hall (1969). Mortality
for humans was calculated using the official
Swedish female life table for 1985.

4In countries with low child mortality, this
age window with minimal death rates has
recently broaden to about 5 to 15 years of age.
When the death rates in this age interval are
presented in logarithmic scale (sensitive to
outliers that are close to zero levels of
mortality), this may create an impression of
large relative differences in death rates.
However the death rates are so low in this age
group that the absolute differences in death
rates are negligible, and it is therefore safe to
assume that death rates are “approximately
constant.”
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Makeham, 1860; Strehler, 1978). An expo-
nential (Gompertzian) increase in death
rates with age is observed for many biolog-
ical species including fruit flies
(Drosophila melanogaster) (Gavrilov &
Gavrilova, 1991), nematodes (Brooks et al.,
1994; Johnson, 1987, 1990), mosquitoes
(Gavrilov, 1980), human lice (Pediculus
humanus) (Gavrilov & Gavrilova, 1991),
flour beetles (Tribolium confusum)
(Gavrilov & Gavrilova, 1991), mice
(Kunstyr & Leuenberger, 1975; Sacher,
1977), rats (Gavrilov & Gavrilova, 1991),
dogs (Sacher, 1977), horses (Strehler, 1978),
mountain sheep (Gavrilov, 1980), and
baboons (Bronikowski et al., 2002).

Gompertz also proposed the first math-
ematical model to explain the exponen-
tial increase in mortality rate with age
(Gompertz, 1825). In reality, failure rates
of organisms may contain both non-aging
and aging terms, as, for example, in
the case of the Gompertz-Makeham law
of mortality (Finch, 1990; Gavrilov &
Gavrilova, 1991; Makeham, 1860;
Strehler, 1978):

In this formula, the first, age-independent
term (Makeham parameter, A) designates
the constant, “non-aging” component of
the failure rate (presumably due to exter-
nal causes of death, such as accidents and
acute infections), whereas the second,
age-dependent term (the Gompertz func-
tion, Re�x) designates the “aging” compo-
nent, presumably due to deaths from
age-related degenerative diseases such as
cancer and heart disease.

The validity of the Gompertz-
Makeham law of mortality can be illus-
trated graphically when the logarithms of
death rates without the Makeham param-
eter (�x � A) are increasing with age in a
linear fashion (see Figure 1.6). The log-
linear increase in death rates (adjusted
for the Makeham term) with age is indeed
a very common phenomenon for many

�(x) � A 	 Re�x

human populations from 35 to 70 years of
age (Gavrilov & Gavrilova, 1991).

Note that the slope coefficient � charac-
terizes an “apparent aging rate” (the rapid-
ity of age-deterioration in mortality); if �
is equal to zero, there is no apparent aging
(death rates do not increase with age).

At advanced ages (after age 80), the
“old-age mortality deceleration” takes
place: death rates increase with age at
a slower pace than expected from
the Gompertz-Makeham law. This mor-
tality deceleration eventually produces
the “late-life mortality leveling-off” and
“late-life mortality plateaus” at extreme
old ages (Curtsinger et al., 1992;
Economos, 1979, 1983; Gavrilov &
Gavrilova, 1991; Greenwood and Irwin,
1939; Vaupel et al., 1998). Actuaries—
including Gompertz himself—first noted
this phenomenon and proposed a logistic
formula for mortality growth with age in
order to account for mortality falloff at
advanced ages (Beard, 1959, 1971; Perks,
1932). Greenwood and Irwin (1939) pro-
vided a detailed description of this phe-
nomenon in humans and even made the
first estimates for the asymptotic value
of the upper limit to human mortality
(see also the chapter by Curtsinger et al.
in this volume and review by Olshansky,
1998). According to their estimates, the
mortality kinetics of long-lived indi-
viduals is close to the law of radioactive
decay with half-time approximately
equal to 1 year.

The same phenomenon of “almost
non-aging” survival dynamics at extreme
old ages is detected in many other biolog-
ical species. In some species, the mortal-
ity plateau can occupy a sizable part of
their life (see Figure 1.5).

Biologists have been well aware of mor-
tality leveling-off since the 1960s. For
example, Lindop (1961) and Sacher (1966)
discussed mortality deceleration in mice.
Strehler and Mildvan (1960) considered
mortality deceleration at advanced ages as
a prerequisite for all mathematical models
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of aging. Later, Economos published a
series of articles claiming a priority in the
discovery of a “non-Gompertzian para-
digm of mortality” (Economos, 1979,
1980, 1983, 1985). He found that mortality
leveling-off is observed in rodents (guinea
pigs, rats, and mice) and invertebrates
(nematodes, shrimps, bdelloid rotifers,
fruit flies, and degenerate medusae
Campanularia Flexuosa). In the 1990s, the
phenomenon of mortality deceleration
and leveling-off became widely known
after publications demonstrated mortality
leveling-off in large samples of Drosophila
melanogaster (Curtsinger et al., 1992) and
medflies (Ceratitis capitata) (Carey et al.,
1992), including isogenic strains of
Drosophila (Curtsinger et al., 1992; Fukui
et al., 1993, 1996). Mortality plateaus at
advanced ages have been observed for
some other insects, including the house
fly (Musca vicina), blowfly (Calliphora
erythrocephala) (Gavrilov, 1980), fruit flies
(Anastrepha ludens, Anastrepha obliqua,
Anastrepha serpentine), parasitoid wasp
(Diachasmimorpha longiacaudtis) (Vaupel
et al., 1998), and bruchid beetle
(Callosobruchus maculates) (Tatar et al.,
1993). Interestingly, the failure kinetics of

manufactured products (steel samples,
industrial relays, and motor heat insula-
tors) also demonstrates the same “non-
aging” pattern at the end of their “life
span” (Economos, 1979).

The phenomenon of late-life mortality
leveling-off presents a theoretical chal-
lenge to many models and theories of
aging. One interesting corollary from
these intriguing observations is that there
seems to be no fixed upper limit for indi-
vidual life span (Gavrilov, 1984; Gavrilov
& Gavrilova, 1991; Wilmoth, 1997).5

This observation calls for a very
general explanation of this apparently
paradoxical “no aging at extreme ages”
phenomenon, which will be discussed
later in this chapter.

Another empirical observation, the
compensation law of mortality, in its
strong form refers to mortality conver-
gence, when higher values for the slope
parameter � (in the Gompertz function)
are compensated by lower values of the
intercept parameter R in different popu-
lations of a given species:

ln(R) � ln(M) � B�

where B and M are universal species-
specific invariants.

Sometimes this relationship is also
called the Strehler-Mildvan correlation
(Strehler, 1978; Strehler & Mildvan, 1960),
although that particular correlation was
largely an artifact of the opposite biases in
parameters estimation caused by not tak-
ing into account the age-independent mor-
tality component, the Makeham term A
(see Gavrilov & Gavrilova, 1991; Golubev,
2004). Parameter B is called the species-
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Figure 1.5 Mortality leveling-off in a population of
4,650 male house flies. Hazard rates were computed
using the life table of the house fly Musca domes-
tica, published by Rockstein & Lieberman (1959).

5Note that there is no mathematical limit to
life span, even with exponential growth of
mortality force (hazard rate). However, this
mathematical limit exists if the Gompertz law
of exponential growth is applied to probability
of death (Gavrilov & Gavrilova, 1991).
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specific life span (95 years for humans), and
parameter M is called the species-specific
mortality rate (0.5 year�1 for humans).
These parameters are the coordinates for
convergence of all the mortality trajecto-
ries into one single point (within a given
biological species), when extrapolated by
the Gompertz function (Gavrilov &
Gavrilova, 1979, 1991). This means that
high mortality rates in disadvantaged pop-
ulations (within a given species) are com-
pensated for by a low apparent “aging rate”
(longer mortality doubling period). As a
result of this compensation, the relative
differences in mortality rates tend to
decrease with age within a given biological
species (see Figure 1.6).

In those cases when the compensation
law of mortality is not observed in its
strong form, it may still be valid in its
weak form—i.e., the relative differences in
mortality rates of compared populations
tend to decrease with age in many species.
Explanation of the compensation law of
mortality is a great challenge for many
theories of aging and longevity (Gavrilov &
Gavrilova, 1991; Strehler, 1978).

There are some exceptions both from
the Gompertz law of mortality and the
compensation law of mortality that
have to be understood and explained.
There were reports that in some cases,
the organisms die according to the
Weibull (power) law (Eakin et al., 1995;
Hirsch & Peretz, 1984; Hirsch et al.,
1994; Janse et al., 1988; Ricklefs &
Scheuerlein, 2002; Vanfleteren et al.,
1998). The Weibull law is more com-
monly applicable to technical devices
(Barlow & Proschan, 1975; Rigdon &
Basu, 2000; Weibull, 1951), whereas
the Gompertz law is more common in
biological systems (Finch, 1990; Gavrilov
& Gavrilova, 1991; Strehler, 1978).
Comparative meta-analysis of 129 life
tables for fruit flies as well as 285 life
tables for humans demonstrates that the
Gompertz law of mortality provides a
much better data fit for each of these
two biological species compared to the
Weibull law (see Gavrilov & Gavrilova,
1991, pp. 55–56, 68–72). Possible explana-
tions for why organisms prefer to die
according to the Gompertz law and tech-
nical devices typically fail according to
the Weibull law are provided elsewhere
(Gavrilov & Gavrilova, 1991, 2001b) and
will be discussed later in this chapter (see
Sections V–VI).

Thus, a comprehensive theory of
species aging and longevity should pro-
vide answers to the following questions:

1. Why do most biological species
deteriorate with age (i.e., die more often as
they grow older), whereas some primitive
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Figure 1.6 Compensation law of mortality.
Convergence of mortality rates in different popula-
tions at advanced ages. Death rates (with removed
age-independent external mortality component,
Makeham parameter A) are plotted in a log scale as
a function of age in the following countries:

1. India, 1941–1950, males; A � 0.00676 year�1

2. Turkey, 1950–1951, males; A � 0.00472 year�1

3. Kenya, 1969, males; A � 0.00590 year�1

4. England and Wales, 1930–1932, females; A �

0.00246 year�1

5. Norway, 1956–1960, females; A � 0.00048 year�1

Computed using data from the UN Demographic
Yearbook (1967; 1975). Adapted from Gavrilov &
Gavrilova, 2003b.
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organisms do not demonstrate such a clear
mortality growth with age (Austad, 2001;
Finch, 1990; Haranghy & Balázs, 1980;
Martinez, 1998)?

2. Specifically, why do mortality rates
increase exponentially with age in many
adult species (Gompertz law)? How should
we handle cases when the Gompertzian
mortality law is not applicable?

3. Why does the age-related increase
in mortality rates vanish at older ages?
Why do mortality rates eventually
decelerate compared to predictions of the
Gompertz law, demonstrating mortality
leveling-off and a late-life mortality
plateau?

4. How do we explain the so-called
compensation law of mortality (Gavrilov
& Gavrilova, 1991)?

Any comprehensive theory of human
aging has to explain these last three
rules, known collectively as mortality, or
failure, laws. And reliability theory, by
way of a clutch of equations, covers all of
them (Gavrilov & Gavrilova, 1991,
2001b), as will be discussed later.

C. Loss of Redundancy (e.g., Cell
Numbers) with Age

Many age changes in living organisms
can be explained by cumulative effects of
cell loss (either physical or functional)
over time. For example, such very com-
mon phenomenon as hair graying with
age is caused by depletion of hair follicle
melanocytes (Commo et al., 2004).
Melanocyte density in human epidermis
declines gradually with age, at a rate of
approximately 0.8 percent per year
(Gilchrest et al., 1979). Hair graying is a
relatively benign phenomenon, but
cell loss can also lead to more serious
consequences.

Recent studies suggest that such con-
ditions as atherosclerosis, atherosclerotic
inflammation, and consequent throm-
boembolic complications could be linked

to age-related exhaustion of progenitor
cells responsible for arterial repair
(Goldschmidt-Clermont, 2003; Libby,
2003; Rauscher et al., 2003). Taking
these progenitor cells from young
mice and adding them to experimental
animals prevents atherosclerosis progres-
sion and atherosclerotic inflammation
(Goldschmidt-Clermont, 2003; Rauscher
et al., 2003).

Age-dependent decline in cardiac func-
tion has recently been linked to the fail-
ure of cardiac stem cells to replace dying
myocytes with new functioning cells
(Capogrossi, 2004). Also, it was found
that aging-impaired cardiac angiogenic
function could be restored by adding
endothelial precursor cells derived from
young bone marrow (Edelberg et al.,
2002).

Chronic renal failure is found to be
associated with a decreased number of
endothelial progenitor cells (Choi, 2004).
People with diminished numbers of
nephrons in their kidneys are more likely
to suffer from hypertension (Keller et al.,
2003), and the number of glomeruli
decreases with human age (Nyengaard &
Bendtsen, 1992).

Humans generally lose 30 to 40 per-
cent of their skeletal muscle fibers by age
80 (Leeuwenburgh, 2003), which con-
tributes to such adverse health outcomes
as sarcopenia and frailty. Loss of striated
muscle cells in such places as the rhab-
dosphincter, from 87.6 percent in a
5-week-old child to only 34.2 percent in
a 91-year-old person, has obvious impli-
cations for urological failure: inconti-
nence (Strasser et al., 2000).

A progressive loss of dopaminergic
neurons in substantia nigra results
in Parkinson’s disease, loss of GABAergic
neurons in striatum produces Huntington’s
disease, loss of motor neurons is respon-
sible for amyotrophic lateral sclerosis,
and loss of neurons in the cortex causes
Alzheimer’s disease over time (Baizabal
et al., 2003). A study of cerebella from

18 L. A. Gavrilov and N. S. Gavrilova

Chapter 01  09/28/05  04:47 PM  Page 18



normal males age 19 to 84 revealed that
the global white matter was reduced by
26 percent with age, and a selective
40 percent loss of both Purkinje and
granule cells was observed in the anterior
lobe (Andersen et al., 2003).

Furthermore, a 30 percent loss of vol-
ume, mostly due to a cortical volume
loss, was found in the anterior lobe,
which is predominantly involved in
motor control (Andersen et al., 2003).
Even if the loss of the volume in various
brain regions is caused by cell atrophy
rather than cell death, it is still indica-
tive for the loss of redundancy (reserve
capacity) with age.

Loss of cells with age is not limited to
the human species; it is observed in other
animals as well. For example, a nematode
C. elegans demonstrates a gradual, pro-
gressive deterioration of muscle, resem-
bling human sarcopenia (Herndon et al.,
2002). The authors of this study also found
that the behavioral ability of nematode
was a better predictor of life expectancy
than chronological age.

Interestingly, recent studies have
found that caloric restriction can prevent
cell loss (Cohen et al., 2004; McKiernan
et al., 2004), which may explain why
caloric restriction delays the onset of
numerous age-associated diseases and
can significantly increase life span in
mammals (Masoro, 2003). It should be
acknowledged, however, that the hypoth-
esis that aging occurs largely because
of cell loss remains a subject of debate
(Van Zant & Liang, 2003).

In terms of reliability theory, the loss
of cells with age is a loss of system
redundancy, and therefore this chapter
will focus further on the effects of redun-
dancy loss on system aging and failure.
Note that the loss of redundancy does
not necessarily imply losing cell num-
bers, because the loss of cell functional-
ity (decrease in proportion of functional
cells) could produce the same adverse
health outcomes with age.

IV. Explanations of Aging
Phenomena Using Reliability

Theory
A. Problem of the Origin of Aging

The aging period for most species occu-
pies the greater part of their life span,
therefore any model of mortality must
explain the existence of this period. It
turns out that the phenomena of mortal-
ity increase with age and the subsequent
mortality leveling-off is theoretically pre-
dicted to be an inevitable feature of all
reliability models that consider aging as a
progressive accumulation of random dam-
age (Gavrilov & Gavrilova, 1991). The
detailed mathematical proof of this pre-
diction for some particular models is pro-
vided elsewhere (Gavrilov & Gavrilova,
1991, 2001b) and is briefly described in
the next sections of this chapter.

The simplest schema, which demon-
strates an emergence of aging in a redun-
dant system, is presented in Figure 1.7.

If the destruction of an organism occurs
not in one but in two or more sequential
random stages, this is sufficient for the
phenomenon of aging (mortality increase)
to appear and then to vanish at older ages.
Each stage of destruction corresponds to
one of the organism’s vitally important
structures being damaged. In the simplest

CHAPTER 1 / Reliability Theory of Aging and Longevity 19

Damage

Damage

No redundancy

Defect

Death

Redundancy Damage accumulation
(aging)

Defect

Figure 1.7 Redundancy creates both damage toler-
ance and damage accumulation (aging).
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The next section provides a mathemat-
ical illustration of these ideas.

B. A Simple Model with Parallel
Structure

In this section we show that a system
built of non-aging components demon-
strates an aging behavior (mortality
growth with age) and subsequent mortal-
ity leveling-off.

Consider a parallel system built of n
non-aging elements with a constant fail-
ure rate k and reliability (survival) func-
tion e�kx (see also Figure 1.3B). In this
case, the reliability function of the entire
parallel system is as follows (see also
Section II.D):

S(x) � 1 � (1 � p)n � 1 � (1 � e�kx )n

This formula corresponds to the simplest
case when the failure of elements is statis-
tically independent. More complex models
would require specific assumptions or
prior knowledge of the exact type of the
interdependence in the elements’ failure.
One of such models known as “the model
of the avalanche-like destruction” is
described elsewhere (see pp. 246–251 in
Gavrilov & Gavrilova, 1991).

Consequently, the failure rate of the
entire system, �(x), can be written as
follows:

when x 

 1/k (early-life period approxi-
mation, when 1 � e�kx � kx);

� k

when x �� 1/k (late-life period approxi-
mation, when 1�e�kx � 1).

Thus, the failure rate of a system ini-
tially grows as a power function of age

 � nknxn�1

 �(x) � �
dS(x)

S(x)dx
�

nk e�kx(1�e�kx)n�1

1 � (1 � e�kx)n
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organisms with unique critical structures,
this damage usually leads to death.
Therefore, defects in such organisms do
not accumulate, and the organisms them-
selves do not age—they just die when
damaged. For example, the inactivation of
microbial cells and spores exposed to a
hostile environment (such as heat) follows
approximately a non-aging mortality
kinetics; their semi-logarithmic survival
curves are almost linear (Peleg et al.,
2003). This observation of non-aging sur-
vival dynamics is extensively used in
the calculation of the efficacy of steriliza-
tion processes in medicine and food
preservation (Brock et al., 1994; Davis
et al., 1990; Jay, 1996). A similar non-
aging pattern of inactivation kinetics is
often observed for viruses (Andreadis &
Palsson, 1997; Kundi, 1999) and enzymes
(Gouda et al., 2003; Kurganov, 2002).

In more complex systems with many
vital structures and significant redun-
dancy, every occurrence of damage does
not lead to death (unless the environment
is particularly hostile). Defects accumu-
late, therefore, giving rise to the phenom-
enon of aging (mortality increase). Thus,
aging is a direct consequence (tradeoff) of
a system’s redundancies, which ensure
increased reliability and an increased life
span of more complex organisms. As
defects accumulate, the redundancy in
the number of elements finally disap-
pears. As a result of this redundancy
exhaustion, the organism degenerates
into a system with no redundancy (that
is, a system with elements connected in
series, in which any new defect leads to
death). In such a state, no further accu-
mulation of damage can be achieved, and
the mortality rate levels off.

The positive effect of a system’s redun-
dancy is damage tolerance, which
decreases the risk of failure (mortality)
and increases life span. However, damage
tolerance makes it possible for damage to
be tolerated and accumulated over time,
thus producing the aging phenomenon.
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(the Weibull law). Then, the tempo at
which the failure rate grows declines,
and the failure rate approaches asymptot-
ically an upper limit equal to k. Here we
should pay attention to three significant
points. First, a system constructed of
non-aging elements is now behaving like
an aging object; that is, aging is a direct
consequence of the redundancy of the
system (redundancy in the number of
elements). Second, at very high ages, the
phenomenon of aging apparently disap-
pears (failure rate levels off) as redun-
dancy in the number of elements
vanishes. The failure rate approaches an
upper limit, which is totally independent
of the initial number of elements but
coincides with the rate of their loss
(parameter k). Third, the systems with
different initial levels of redundancy
(parameter n) will have very different
failure rates in early life, but these differ-
ences will eventually vanish as failure
rates approach the upper limit deter-
mined by the rate of elements’ loss
(parameter k). Thus, the compensation
law of mortality (in its weak form) is an
expected outcome of this illustrative
model.

Note also that the identical parallel
systems in this example do not die simul-
taneously when their elements fail by
chance. A common view in biology is the
idea that all members of a homogeneous
population in a hypothetical constant
environment should have identical life
spans (die simultaneously) so that the sur-
vival curve of such a population would
look like a rectangle. This idea stems
from the basic principles of quantitative
genetics, which assume implicitly that
every animal of a given genotype has the
same genetically determined life span so
that all variation of survival time around
a genotype mean results from the envi-
ronmental variance. George Sacher (1977)
pointed out that this concept is not appli-
cable to longevity and used an analogy
with radioactive decay in his arguments.

Even the simplest parallel system has a
specific life span distribution determined
entirely by a stochastic nature of the
aging process. In order to account for
this stochasticity, it was proposed that
researchers use a stochastic variance com-
ponent of life span in addition to genetic
and environmental components of pheno-
typic life span variance (Gavrilov &
Gavrilova, 1991). The stochastic nature of
a system’s destruction also produces het-
erogeneity in an initially homogeneous
population. This kind of induced hetero-
geneity was observed in isogenic strains of
nematodes in which aging resulted in sub-
stantial heterogeneity in behavioral capac-
ity among initially homogeneous worms
kept in controlled environmental condi-
tions (Herndon et al., 2002).

The graph shown in Figure 1.8 depicts
mortality trajectories for five systems
with different degrees of redundancy.

System 1 has only one unique element
(no redundancy), and it has the highest
failure rate, which does not depend on
age (no aging). System 2 has two ele-
ments connected in parallel (one extra
element is redundant), and the failure
rate initially increases with age (aging
appears). The apparent rate of aging can
be characterized by a slope coefficient
that is equal to 1. Finally, the failure rate
levels off at advanced ages. Systems 3, 4,
and 5 have, respectively, three, four, and
five elements connected in parallel (two,
three, and four extra elements are redun-
dant), and the failure rate initially
increases with age at an apparent aging
rate (slope coefficient) of 2, 3, and 4,
respectively. Finally, the mortality trajec-
tories of each system level off at
advanced ages at exactly the same upper
limit to the mortality rate.

This computational example illustrates
the following general ideas: (1) Aging is a
direct consequence of a system’s redun-
dancy, and the expression of aging is
directly related to the degree of a system’s
redundancy. Specifically, an apparent
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relative aging rate is equal to the degree
of redundancy in parallel systems. (2) All
mortality trajectories tend to converge
with age so that the compensation law of
mortality is observed. (3) All mortality
trajectories level off at advanced ages, and
a mortality plateau is observed. Thus, the
major aging phenomena (aging itself,
the compensation law of mortality, late-
life mortality deceleration, and late-life
mortality plateaus) are already observed
in the simplest redundant systems.
However, to explain the Gompertz law of

mortality, an additional idea should be
taken into account (see the next section).

V. The Idea of High Initial
Damage Load: The HIDL

Hypothesis

In 1991, Gavrilov and Gavrilova sug-
gested an idea that early development of
living organisms produces an exception-
ally high load of initial damage, which is
comparable with the amount of subse-
quent aging-related deterioration accu-
mulating during the rest of the entire
adult life.

This idea of High Initial Damage Load
(the HIDL hypothesis) predicts that even
small progress in optimizing the early
developmental processes can potentially
result in a remarkable prevention of
many diseases in later life, postponement
of aging-related morbidity and mortality,
and significant extension of healthy life
span (Gavrilov & Gavrilova, 1991, 2001b,
2003b, 2004a). Thus, the idea of early-life
programming of aging and longevity may
have important practical implications for
developing early-life interventions in
promoting health and longevity.

Although this idea may look like a
counterintuitive assumption, it fits well
with many empirical observations on
massive cell losses in early development.
For example, the female human fetus at
age 4 to 5 months possesses 6 to 7 mil-
lion eggs (oocytes). By birth, this number
drops to 1 to 2 million and declines even
further. At the start of puberty in normal
girls, there are only 0.3 to 0.5 million
eggs—only 4 to 8 percent of initial num-
bers (Finch & Kirkwood, 2000; Gosden,
1985; Wallace & Kelsey, 2004). It is now
well established that the exhaustion of
the ovarian follicle numbers over time is
responsible for menopause (reproductive
aging and failure), and women having
higher ovarian reserve have longer repro-
ductive life span (Wallace & Kelsey,
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Figure 1.8 Failure kinetics of systems with differ-
ent levels of redundancy. The dependence of the log-
arithm of mortality force (failure rate) on the
logarithm of age in five systems with different levels
of redundancy (computer simulation experiment).
Dependence 1 is for the system containing only one
unique element (no redundancy). Dependence 2 is
for the system containing two elements connected
in parallel (degree of redundancy � 1). Dependencies
3, 4, and 5 are for systems containing, respectively,
three, four, and five elements connected in parallel
(with increasing levels of redundancy). The scales for
mortality rates (vertical axis) and for age (horizontal
axis) are presented in dimensionless units (�/k) for
mortality rates and kx for age to ensure the general-
izability of the results (invariance of graphs on fail-
ure rate of the elements in the system, parameter k).
Also, the log scale is used to explore the system
behavior in a wide range of ages (0.01 to 10 units)
and failure rates ( 0.00000001 to 1.0 units). Adapted
from Gavrilov & Gavrilova, 2003b, 2004c.
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2004). When young ovaries were trans-
planted to old post-reproductive mice,
their reproductive function was restored
for a while (Cargill et al., 2003). This
example illustrates a general idea that
aging occurs largely because of cell loss,
which starts early in life.

Massive cell losses in early develop-
ment create differences between organ-
isms in the numbers of remaining cells,
which can be described by the binomial
distribution or, at particularly high
levels of cell losses, by the Poisson distri-
bution. This, in turn, can produce a
quasi-exponential (Gompertzian) pattern
of age-specific mortality kinetics with
a subsequent mortality deceleration
(Gavrilov & Gavrilova, 1991). In some
species, including C. elegans, the devel-
opmental loss of cells seems to be very
precise. If adult individuals are identical
in the initial numbers of functional cells,
one can expect that mortality kinetics in
such cases would be closer to the
Weibull law rather than the Gompertz
law. However, the Gompertz law also
can be expected for initially identical
organisms if the critical vital organs
within a given organism differ by their
cell numbers (Gavrilov & Gavrilova,
1991, pp. 252–264; 2001b).

Mathematical proof for this statement
was published elsewhere (see Gavrilov &
Gavrilova, 1991, pp. 264–272) and will be
briefly summarized in Section VI. Here
we concentrate on the substantive dis-
cussion of the idea of high initial damage
load in biological systems.

A. Differences Between Biological and
Technical Systems

Biological systems are different from tech-
nical devices in at least two aspects. The
first fundamental feature of biological sys-
tems is that, in contrast to technical (arti-
ficial) devices that are constructed out of
previously manufactured and tested com-
ponents, organisms form themselves in

ontogenesis through a process of self-
assembly out of de novo forming and
externally untested elements (cells).
Moreover, because organisms are formed
from a single cell, any defects in early life
such as deleterious mutations or deleteri-
ous epigenetic modifications (i.e., genomic
imprinting) can proliferate by mechanism
of clonal expansion, forming large clusters
of damaged cells. This proliferation of
defects during development of biological
systems can make them highly damaged
by the time they are formed.

The second property of organisms is
the extraordinary degree of miniaturiza-
tion of their components (the micro-
scopic dimensions of cells as well as the
molecular dimensions of information
carriers like DNA and RNA), permitting
the creation of a huge redundancy in the
number of elements. Thus, we can
expect that for living organisms, in dis-
tinction to many technical (manufac-
tured) devices, the reliability of the
system is achieved not by the high initial
quality of all the elements but by their
huge numbers (redundancy).

The fundamental difference in the
manner in which the system is formed
(external assembly in the case of techni-
cal devices and self-assembly in the case
of biological systems) has two important
consequences. First, it leads to the macro-
scopicity of components in technical
devices compared to biosystems, since
technical devices are assembled “top-
down” with the participation of a macro-
scopic system (man) and must be suitable
for this macroscopic system to use (i.e.,
commensurate with man). Organisms, on
the other hand, are assembled “bottom-
up” from molecules and cells, resulting
in an exceptionally high degree of minia-
turization of the component parts.
Second, since technical devices are
assembled under the control of man, the
opportunities to pretest components
(external quality control) are incompara-
bly greater than in the self-assembly of
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biological systems. This inevitably leads
to organisms being “littered” with a great
number of defective elements. As a
result, the reliability of technical devices
is assured by the high quality of elements
(fault avoidance), with a strict limit on
their numbers because of size and cost
limitations, whereas the reliability of bio-
logical systems is assured by an excep-
tionally high degree of redundancy to
overcome the poor quality of some ele-
ments (fault tolerance).

B. Some Examples Illustrating the HIDL
Hypothesis

The idea that living organisms start their
lives with a large number of defects is
not a new one. Biological justification for
this idea was discussed by Dobzhansky,
who noted that, from the biological per-
spective, Hamlet’s “thousand natural
shocks that flesh is heir to” was an
underestimate and that in reality “the
shocks are innumerable” (1962, p. 126).

Recent studies have found that troubles
in human life start from the very begin-
ning: the cell-cycle checkpoints (which
ensure that cells will not divide until
DNA damage is repaired and chromoso-
mal segregation is complete) do not oper-
ate properly at the early, cleavage stage in
human embryos (Handyside & Delhanty,
1997). This produces mosaicism of the
preimplantation embryo, where some
embryonic cells are genetically abnormal
(McLaren, 1998), with potentially devas-
tating consequences in later life.

Most of the DNA damage caused by
copy errors during DNA replication also
occurs in early life because most cell
divisions happen in early development.
As a result of extensive DNA damage in
early development, many apparently nor-
mal tissues of young organisms have a
strikingly high load of mutations, includ-
ing abundant oncogenic mutations and
frequent clones of mutated somatic cells
(Cha et al., 1994; Deng et al., 1996;

Jonason et al., 1996; Khrapko et al., 2004;
Nekhaeva et al., 2002).

Loss of telomeres, eventually leading to
such outcomes as genomic instability, cell
death (apoptosis), cell senescence, and per-
haps to organism’s aging (Kim et al., 2002),
also begins before birth, and it is directly
linked to DNA replication during cell divi-
sions, which are particularly intensive at
early stages of growth and development
(Collins & Mitchell, 2002; DePinho &
Wong, 2003; Forsyth et al., 2002; Kim
et al., 2002). In humans, the length of
telomeres declines precipitously before the
age of 4 (by 25 percent) and then declines
further very slowly (Hopkin, 2001).

Another potential source of extensive
initial damage is the birth process itself.
During birth, the future child is first
deprived of oxygen by compression of
the umbilical cord (Moffett et al., 1993)
and suffers severe hypoxia (often with
ischemia and asphyxia). Then, just after
birth, a newborn child is exposed to oxida-
tive stress because of acute reoxygenation
while starting breathing. It is known that
acute reoxygenation after hypoxia may
produce an extensive oxidative damage
through the same mechanisms that also
produce ischemia-reperfusion injury (IRI)
and asphyxia-reventilation injury (Martin
et al., 2000). Asphyxia is a common occur-
rence in the perinatal period, and asphyx-
ial brain injury is the most common
neurologic abnormality in the neonatal
period (Dworkin, 1992) that may manifest
in neurologic disorders in later life. The
brain damage that occurs after asphyxia
may cause long-term neurological conse-
quences in full-term infants (Volpe, 2000)
and lead to cerebral palsy, epilepsy, and
mental retardation (Hack & Fanaroff,
2000; Hjalmarsson et al., 1988, pp. 28–36).
Perhaps the rare geniuses are simply those
lucky persons whose early-life brain dam-
age was less extensive than the “normal”
level. Thus, using Hamlet’s metaphor,
we may conclude that humans “suffer
the slings and arrows of outrageous
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fortune” and have “a sea of troubles” from
the very beginning of their lives.

It follows from this concept of HIDL
that even small progress in optimizing
the processes of ontogenesis and increas-
ing the numbers of initially functional
elements can potentially result in a
remarkable fall in mortality and a signifi-
cant improvement in life span. This opti-
mistic prediction is supported by
experimental evidence (in laboratory
mice) of increased offspring life span if
future parents are fed antioxidants,
which presumably result in protection of
parental germ cells against oxidative
damage (Harman & Eddy, 1979).

From this point of view, parental charac-
teristics determining the quality of the
gametes, and especially maternal charac-
teristics determining the accuracy of the
early stages of development, would be
expected to have significant influence on
the life span of the offspring, which may
be in some cases even stronger than the
effect of these same properties of the off-
spring themselves. In other words, the reli-
ability concept leads us to a paradoxical
conjecture: sometimes a better predictor
of life span may be found not among the
characteristics of the organism itself but
among the characteristics of its parents.

Gavrilov & Gavrilova (1991) tested this
counterintuitive prediction using data on
life span and metabolic characteristics of
21 inbred and F1-hybrid mouse genotypes
(several hundred mice) published by

Sacher & Duffy (1979). It was found
that the six traits (body weight and resting
and average metabolic rates both at young
and old ages) of parental genotypes
explained 95 percent of variation in mean
life span between 16 F1-hybrid mice geno-
types, whereas the same six traits of hybrid
mice themselves explained only 25 percent
of variation in their mean life span
(Gavrilov & Gavrilova, 1991, pp. 175–182).
The highest mean life span was observed
in the progeny of those parents who had
the lowest resting metabolic rate at young
age. This observation is consistent with a
hypothesis that the differences in progeny
life span could be linked to the rates of
oxidative DNA damage in parental germ
cells. Interestingly, the resting metabolic
rate measured in young progeny itself was
not predictive for progeny life span (see
Table 1.1).

Thus, certain parameters (such as rest-
ing metabolic rate at young age) meas-
ured in parents could be better predictors
of progeny life span compared to the
same parameters measured among the
progeny itself.

The concept of high initial damage load
also predicts that early-life events may
affect survival in later adult life through
modulating the level of initial damage.
This prediction proved to be correct for
such early-life indicators as parental age
at a person’s conception (Gavrilov &
Gavrilova, 1997, 2000, 2003a; Gavrilova
et al., 2003) and the month of a person’s
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Table 1.1
Parental Resting Metabolic Rates at Young Age Are Better Predictors of Life Span of Mice Progeny

Than the Resting Metabolic Rates (RMR) Measured in Progeny Itself*

Variable Regression Standard Error t-value p-value
Coefficient

Maternal RMR �1054 252 �4.18 0.001
Paternal RMR �795 254 �3.13 0.009
Progeny RMR 42 205 0.20 0.843

*Parameter values for linear regression of progeny life span on parental and progeny resting metabolic rate measured at
young age (RMR) for 16 genotypes of F1-hybrid mice. Computed using data published by Sacher & Duffy (1979).
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birth (Doblhammer & Vaupel, 2001;
Gavrilov & Gavrilova, 1999, 2003a;
Gavrilova et al., 2003). The month of
birth may influence a person’s life span
through early-life exposure to seasonal
vitamin deficiencies and seasonal infec-
tions during critical periods of child devel-
opment (Gavrilov & Gavrilova, 2001a). It
is known that deficiencies of vitamins
B-12, folic acid, B-6, niacin, and vitamins
C and E appear to mimic radiation in
damaging DNA by causing single- and
double-stand breaks, oxidative lesions, or
both (Ames, 2004). Vitamin deficiencies
had profound seasonality in the past when
contemporary adults were born, and these
deficiencies may be particularly harmful
at the early stages of human development
(Gavrilov & Gavrilova, 2001a).

There is mounting evidence now in sup-
port of the idea of fetal origins of adult
degenerative diseases (Barker, 1998; Kuh &
Ben-Shlomo, 1997; Leon et al., 1998;
Lucas et al., 1999) and early-life program-
ming of aging and longevity (Gavrilov &
Gavrilova, 1991, 2001a, 2003a,b). Women
may be particularly sensitive to early-life
exposures because they are mosaics of two
different cell types (one with active pater-
nal X chromosome and one with active
maternal X chromosome), and the pattern
of this mosaic is determined early in life.
Indeed, this conjecture of stronger female
response to early-life exposures is con-
firmed for such early-life predictors of
adult life span as paternal age at a person’s
conception (Gavrilov & Gavrilova, 1997,
2000, 2003a, 2004a; Gavrilova et al., 2003)
and the month of a person’s birth
(Gavrilov & Gavrilova, 2003a; Gavrilova
et al., 2003).

VI. Reliability Models of Aging
for Biological Systems

It was demonstrated in Section IV that
the aging phenomenon emerges when a
system gains some redundancy (reserves).

The failure rate of a simple parallel sys-
tem built of non-aging elements
increases with age, although the initial
failure kinetics follows the Weibull law
rather then the Gompertz law. This limi-
tation of the model is rooted in the
assumption that the system is built of
initially ideal structures where all ele-
ments are functional from the outset.
This standard assumption may be justi-
fied for technical devices manufactured
from pretested components, but it is not
justified for living organisms, presum-
ably replete with defects, for the reasons
described earlier. Gavrilov and Gavrilova
(1991) proposed a family of reliability
models based on the idea of initial dam-
age load, which allows us to explain all
three major laws of biological aging and
mortality: the Gompertz law, the late-life
deceleration law, and the compensation
law of mortality (mortality convergence
at advanced ages). A brief description of
these models is provided below.

A. Highly Redundant System Replete
with Defects

The simplest model in this family of
reliability models is the model of a
series-parallel structure with distributed
redundancy within the organism (see
Gavrilov & Gavrilova, 1991, pp. 252–264;
2001b). If distribution of subsystems
within the organism according to ini-
tially functional elements can be
described by the Poisson law because of
high initial damage load, then the failure
rate of such series-parallel systems can
be approximated initially by the expo-
nential (Gompertz) law with subsequent
mortality leveling-off.

According to this model, the compen-
sation law of mortality is inevitable if
the “true aging rate” (relative rate of ele-
ments’ loss) is similar in different popu-
lations of a given species (presumably
because of homeostasis—stable body
temperature, glucose concentration, etc.).
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This suggested explanation leads to an
interesting testable prediction that for
lower organisms with poor homeostasis,
there may be deviations from the com-
pensation law of mortality.

B. Partially Damaged Redundant System

The simplest model, which was described
earlier, assumed an extremely high level
of initial damage load. In a more general
model, the distribution of subsystems in
the organism according to the number of
initially functional elements is described
by the binomial rather than Poisson dis-
tribution. In this case, the failure rate of a
system initially follows the binomial fail-
ure law (Gavrilov & Gavrilova, 1991,
2001b).

Thus, if the system is not initially
ideal, the failure rate in the initial period
of time grows exponentially with age,
according to the Gompertz law. A numer-
ical example provided in Figure 1.2 shows
that increase in the initial system’s dam-
age load (initial virtual age) converts the
observed mortality trajectory from the
Weibull to the Gompertz one. The model
also explains the compensation law of
mortality and mortality leveling-off later
in life (see Gavrilov & Gavrilova, 1991,
2001b).

Thus, both reliability models described
here provide an explanation for a general
pattern of aging and mortality in biologi-
cal species: the exponential growth of
failure rate in the initial period, with the
subsequent mortality deceleration and
leveling-off, as well as the compensation
law of mortality.

C. Heterogeneous Population
of Redundant Organisms

The models discussed so far examined a
situation in which series-connected vital
subsystems (blocks) have varying degrees
of redundancy within each organism,
while no additional assumptions were

made about possible initial differences
between the organisms themselves. In a
more general case, the population hetero-
geneity needs to be taken into account
because there is a large variation in the
numbers of cells for the organisms of the
same species (Finch & Kirkwood, 2000).
The model of heterogeneous redundant
systems (Gavrilov & Gavrilova, 1991, pp.
264–272) demonstrates that taking into
account the heterogeneity of the popula-
tion also provides an explanation for all
the basic laws of mortality. This model
assumes that there is a distribution of
organisms with regard to their initial
redundancy levels (e.g., number of func-
tional cells) within a population under
study. If this distribution is close to either
the binomial or the Poisson distribution,
then a quasi-exponential (Gompertzian)
pattern of mortality increase with age is
expected initially, with subsequent mor-
tality leveling-off (Gavrilov & Gavrilova,
1991, pp. 264–272).

Figure 1.9 shows computed data for a
model in which organisms have a differ-
ent number of elements (connected in
parallel) and are distributed by their
redundancy levels according to the
Poisson distribution law, with the mean
number of elements equal to �.

Note that the dependence of the loga-
rithm of failure rate on age is almost a
linear one, indicating that the initial fail-
ure kinetics is indeed close to the
Gompertz law. This initial Gompertzian
period of failure rate growth can be easily
extended for the organism’s entire life
span in the case of more complex sys-
tems with many vital components (built
of parallel elements), each being critical
for survival (serial connection of a large
number of components; see Section II.D).

Figure 1.9 also demonstrates that the
populations of organisms with higher
mean levels of redundancy (parameter �)
have lower death rates, but these death
rates are growing steeper with age (the
compensation law of mortality).
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D. Accumulation of Defects with
Constant Rate of Damage Flow

Another reliability model of aging is
obtained after a critical reinterpretation
of the assumptions underlying the previ-
ously described models. In fact, these
models contain an assumption that the
death of the organism occurs only when
all the elements in a block fail. It is pos-
sible that this hypothesis may be justi-
fied in a number of cases for some of the
organism’s subsystems. However, in the
majority of cases, the hypothesis seems
contentious. For example, it is hard to
imagine that a single surviving liver cell
(hepatocyte) can assume the functions of
an entire destroyed liver. Significantly
more realistic is the hypothesis that the
system initially contains an enormous
number of elements that greatly exceeds
the critical number of defects, leading to

the death of the organism. In this case,
we arrive at a schema for the accumula-
tion of damage in which the rate of dam-
age flow (equal to the product of the
number of elements and their failure
rate) turns out to be practically constant
in view of the incommensurability of the
number of elements and the permitted
number of defects (see Gavrilov &
Gavrilova, 1991, pp. 272–276).

This model also allows us to take into
account the influence of living condi-
tions on the value of the critical number
of defects incompatible with the survival
of the organism. The key to the solution
of this problem is the replacement of the
parallel connection hypothesis (assumed
in previous models) with the more realis-
tic assumption that there exists a critical
number of defects incompatible with the
survival of the organism. In this case, it
is natural to expect that under harsher
conditions, the critical number of defects
leading to death might be less than under
more comfortable living conditions. In
particular, in the wild, when an animal is
deprived of care and forced to acquire its
own food as well as to defend itself
against predators, the first serious dam-
age to the organism can lead to death. It
is therefore not surprising that the mor-
tality of many animals (in particular,
birds) is practically independent of age in
the wild. This follows directly from the
single-stage destruction of the organism
model. On the other hand, the greater
the number of defects the organism can
accumulate while remaining alive, the
greater its life span will be.

The standard model of defect accumula-
tion with constant rate of damage flow
predicts that at the initial moment in
time, mortality grows according to a
power (Weibull) law of mortality. If we
assume that distribution of living organ-
isms according to the number of defects
they have is described by the Poisson law,
then at the initial moment in time, this
model leads to the binomial law of
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mortality. In this model, the compensa-
tion law of mortality can be obtained both
as a result of variation in the degree to
which the organisms are initially dam-
aged, and of variation in the critical num-
ber of defects, dependent on the harshness
of living conditions (see Gavrilov &
Gavrilova, 1991, pp. 272–276).

Summarizing this brief review of
reliability models, note the striking simi-
larity between the conclusions of the
considered models. All these models pre-
dict a mortality deceleration, no matter
what assumptions are made regarding
initial population heterogeneity or its
complete initial homogeneity. Moreover,
these reliability models of aging produce
mortality plateaus as inevitable out-
comes for any values of considered
parameters. The only constraint is that
the elementary steps of the multistage
destruction process of a system should
occur by chance only, independent of
age. The models also predict that an ini-
tially homogeneous population will
become highly heterogeneous for risk of
death over time (acquired heterogeneity).
The similarity of conclusions obtained
from several different models means that
it is impossible on the basis of the estab-
lished mortality phenomena to uncover
the correct mechanism behind the age-
related destruction of organisms, and fur-
ther studies are necessary to discriminate
between the competing models.

One can of course derive no pleasure
from this circumstance, but there are
two reasons that give ground for opti-
mism. First, the different models seem to
lead to very similar interpretations of
certain mortality phenomena. For exam-
ple, the compensation law of mortality is
only possible when the relative rate of
redundancy loss is the same in all popu-
lations of a given species. This interpre-
tation of the compensation law of
mortality is not only a feature of the
models described in this chapter but also
of other models (Gavrilov, 1978; Gavrilov

et al., 1978; Strehler & Mildvan, 1960).
The existence of a multitude of compet-
ing models is therefore compatible with
the reliable and meaningful interpreta-
tion of a number of mortality phenom-
ena because variability of models does
not preclude their agreement on a num-
ber of issues. Second, if different models
lead to the same formulas—for example
the binomial law of mortality—this
merely makes the problem of interpret-
ing results more complicated for the the-
oretician, but significantly facilitates the
work for the experimenter. Indeed, for
the analysis of data, it is preferable to use
a formula that is supported not by a sin-
gle model but by a whole family of mod-
els that encompass a wide spectrum of
possible situations.

VII. Evolution of Species
Reliability

Reliability theory of aging is perfectly
compatible with the idea of biological
evolution, and it helps to identify key
components that may be important
for evolution of species reliability and
durability (longevity): initial redundancy
levels, initial damage load, rate of
redundancy loss, and repair potential.
Moreover, reliability theory helps evolu-
tionary theories explain how the age of
onset of diseases caused by deleterious
mutations could be postponed to later
ages (as suggested by the mutation accu-
mulation theory of aging)—this could be
easily achieved by a simple increase in
the initial redundancy levels (e.g., initial
cell numbers).

From the reliability perspective, the
increase in initial redundancy levels is
the simplest way to improve survival at
particularly early reproductive ages (with
gains fading at older ages). This exactly
matches with the higher fitness priority
of early reproductive ages emphasized
by evolutionary theories. Evolutionary
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and reliability ideas also help to under-
stand why organisms seem to “choose” a
simple but short-term solution to the
survival problem through enhancing the
systems redundancy, rather than a more
permanent but complicated solution
based on rigorous repair (with a potential
for negligible senescence).

It may be interesting and useful to
compare failure rates of different biologi-
cal species expressed in exactly the same
units of risk (risk of death per individual
per day). Returning back to the earlier
Figure 1.4, we can notice with some sur-
prise that the death rates of young vigor-
ous fruit flies kept in protected
laboratory conditions is as high as among
very old people! This indicates that fruit
flies from the very beginning of their
lives have very unreliable design com-
pared to humans. This observation also
tells us that young organisms of one
biological species may have the same
failure risk as old organisms of another
species—that is, being old for humans is
as good as being young for fruit flies.
Note that at extreme old ages, the death
rates of fruit flies are well beyond human
death rates (see Figure 1.4). In terms
of reliability models, this observation
suggests that fruit flies are made of less
reliable components (presumably cells),
which have higher failure rates compared
to human cells.

We can ask ourselves a question: is it a
general rule that shorter-lived biological
species should always have higher death
rates within comparable age groups (say,
within “young” or “old” age groups)?
Traditional evolutionary theories suggest
that indeed shorter-lived species should
have higher “intrinsic” death rates in
protected environments because these
rates are shaped in evolution through
selection pressure by death rates in the
wild (predation, starvation, etc.). In other
words, defenseless fruit flies in the wild
experience much higher death rates than
do humans; therefore a selection pressure

to increase their “intrinsic” reliability
was less intensive compared to humans.
This traditional evolutionary paradigm
also says that birds live longer and have
lower “intrinsic” death rates because of
adaptation to flight, which improved
their survival in the wild and increased a
selection pressure to further decrease
“intrinsic” death rates (Austad, 2001).

Thus, if a bird (say, a finch) is compared
to a similar-sized shorter-lived mammal
(say, a rat), the expected picture should
be similar to Figure 1.4: a bird should
have lower death rates than a rat both in
the beginning and in the end of their
lives. Interestingly, this prediction of
traditional evolutionary paradigm could
be confronted with an alternative predic-
tion expected from a reliability paradigm.
Reliability paradigm predicts that birds
should be very prudent in redundancy of
their body structures (because it comes
with a heavy cost of additional weight,
making flight difficult). Therefore, a
flight adaptation should force the birds to
evolve in a direction of high reliability of
their components (cells) with low levels
of redundancy (cell numbers). Thus, relia-
bility paradigm predicts that “intrinsic”
death rates of birds in protected environ-
ments should be rather high at young
ages (because of low redundancy levels),
whereas at old ages their death rates
might be much lower than in other
species (because of higher reliability of
their cells). This suggestion of higher reli-
ability of avian cells agrees with the
recent findings of increased resistance
of these cells to oxidative stress and
DNA damage (Holmes & Ottinger, 2003;
Ogburn et al., 1998, 2001).

Figure 1.10 presents data on “intrin-
sic” mortality in Bengalese finches as
compared to rats for both species living
in protected environments.

Note that the death rates in both species
are very close to each other at young ages,
but later a mortality divergence occurs so
that old birds have much lower death rates
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than old rats. These observations match
the predictions of a reliability paradigm
but not a traditional evolutionary explana-
tion discussed earlier (the initial death
rates for birds are much higher than
expected from the traditional evolutionary
perspective). Thus, a comparison of
species death rates may be useful for test-
ing different ideas on evolution of species
aging and reliability.

Another interesting observation comes
from a comparison of humans with
horses (see Figure 1.11). It could be
expected that shorter-lived horses should
have higher death rates than humans.
However, this prediction is only valid for
young ages. The data demonstrate that
an old horse is not much different from
an old man in terms of mortality risk
(see Figure 1.11). This example is oppo-
site to observations on finch–rat compar-
isons and demonstrates a mortality
convergence between two different bio-
logical species (man and horse) at older
ages. In terms of reliability models, this
observation may indicate that the rates
of the late stages of body destruction are

similar in horses and humans, whereas
the rates of the early stages of the aging
process are vastly different in these two
species.

These intriguing findings demonstrate
that there are promising opportunities for
further comparative studies on the evolu-
tion of species reliability and the merging
of the reliability and evolutionary theo-
ries of aging. This reliability-evolutionary
approach could be considered as further
development of the earlier compara-
tive studies of species aging and life his-
tories (Austad, 1997, 2001; Gavrilov &
Gavrilova, 1991; Holmes et al., 2001;
Promislow, 1993, 1994).

Another promising direction for the reli-
ability-evolutionary approach is to study
the selection effects for high performance
(e.g., the ability to avoid predators). Classic
evolutionary theories predict that an
exposure to high extrinsic mortality due
to predation should produce shorter-lived
species (Charlesworth, 2001; Medawar,
1946; Williams, 1957). This prediction
could be confronted with the opposite
prediction of reliability theory, which says
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that elimination of weak individuals by
predators should increase species life span
because of selection for better perform-
ance and lower initial damage load.
Interestingly, recent studies found an
increased life span of guppies evolving in a
high predation environment (Reznick et
al., 2004) as predicted by the reliability
theory of aging.

VIII. Conclusions

Extensive studies of aging have produced
many important and diverse findings,
which require a general theoretical frame-
work for them to be organized into a
comprehensive body of knowledge.

As demonstrated by the success of evo-
lutionary theories of aging, based on a
general idea of the declining force of nat-
ural selection with age, quite general the-
oretical considerations can in fact be
very useful and practical when applied
to aging research (Charlesworth, 2000;
Le Bourg, 2001; Martin, 2002; Partridge &
Gems, 2002).

In this chapter, we attempted to go one
step further in the search for a broader
explanation of aging (not limited to bio-
logical species only) by applying a gen-
eral theory of systems failure known as
reliability theory. Considerations of this
theory lead to the following conclusions:

1. Redundancy is a key notion for
understanding aging, and the systemic
nature of aging in particular. Systems
that are redundant in numbers of
irreplaceable elements do deteriorate
(i.e., age) over time, even if they are
built of non-aging elements. The
positive effect of system redundancy is
damage tolerance, which decreases
mortality and increases life span.
However, damage tolerance makes it
possible for damage to be tolerated and
accumulated over time, thus producing
the aging phenomenon.

2. An apparent aging rate or
expression of aging (measured as age
differences in failure rates, including
death rates) is higher for systems with
higher redundancy levels (all other
things being equal). This is an important
issue because it helps put a correct
perspective over fascinating observations
of negligible senescence (no apparent
aging) observed in the wild and at
extreme old ages. Reliability theory
explains that some cases of negligible
senescence may have a trivial
mechanism (lack of redundancies in the
system being exposed to a challenging
environment) and, therefore, will not
help to uncover “the secrets of negligible
senescence.” The studies of negligible
senescence make sense, however, when
death rates are also demonstrated to be
negligible.

Reliability theory also persuades a
re-evaluation of the old belief that aging
is somehow related to limited economic
or evolutionary investments in systems
longevity. The theory provides a com-
pletely opposite perspective on this
issue—aging is a direct consequence of
investments into systems reliability and
durability through enhanced redundancy.
This is a significant statement because it
helps us to understand why the expression
of aging (differences in failure rates
between younger and older age groups)
may be actually more profound in more
complex redundant systems (organisms)
designed for higher reliability.

3. During the life course, organisms are
running out of cells (Gosden, 1985;
Herndon et al., 2002), losing reserve
capacity (Bortz, 2002; Sehl & Yates, 2001),
and this redundancy depletion explains
the observed “compensation law of
mortality” (mortality convergence at
older ages) as well as the observed late-life
mortality deceleration, leveling-off, and
mortality plateaus.

4. Living organisms seem to be formed
with a high load of initial damage, and
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therefore their life span and aging
patterns may be sensitive to early-life
conditions that determine this initial
damage load during early development.
The idea of early-life programming of
aging and longevity may have important
practical implications for developing
early-life interventions promoting health
and longevity.

The theory also suggests that aging
research should not be limited to studies
of qualitative changes (like age changes
in gene expression) because changes in
quantity (numbers of cells and other
functional elements) could be an impor-
tant driving force in the aging process. In
other words, aging may be largely driven
by a process of redundancy loss.

The reliability theory predicts that a
system may deteriorate with age even if
it is built from non-aging elements with
constant failure rate. The key issue here
is the system’s redundancy for irreplace-
able elements, which is responsible for
the aging phenomenon. In other words,
each particular step of system destruc-
tion/deterioration may seem to be ran-
dom (no aging, just occasional failure by
chance), but if a system failure requires a
sequence of several such steps (not just a
single step of destruction), then the sys-
tem as a whole may have an aging
behavior.

Why is this important? Because the
significance of beneficial health-promot-
ing interventions is often undermined by
claims that these interventions are not
proven to delay the process of aging
itself, but instead that they simply delay
or “cover-up” some particular manifesta-
tions of aging.

In contrast to these pessimistic views,
the reliability theory says that there may
be no specific underlying elementary aging
process itself; instead, aging may be largely
a property of a redundant system as a
whole because it has a network of destruc-
tion pathways, each being associated with

particular manifestations of aging (types of
failure). Therefore, we should not be dis-
couraged by only partial success of each
particular intervention, but instead we can
appreciate an idea that we do have so
many opportunities to oppose aging in
numerous different ways.

Thus, the efforts to understand the
routes and the early stages of age-related
degenerative diseases should not be dis-
carded as irrelevant to understanding
“true” biological aging. On the contrary,
the attempts to build an intellectual fire-
wall between biogerontological research
and clinical medicine are counterproduc-
tive. After all, the main reason people are
really concerned about aging is because it
is related to health deterioration and
increased morbidity. The most important
pathways of age changes are those that
make older people sick and frail (Bortz,
2002).

Reliability theory suggests general
answers to both the “why” and the
“how” questions about aging. It explains
“why” aging occurs by identifying the
key determinant of aging behavior: sys-
tem redundancy in numbers of irreplace-
able elements. Reliability theory also
explains “how” aging occurs, by focusing
on the process of redundancy loss over
time as the major mechanism of aging.

Aging is a complex phenomenon (Sehl &
Yates, 2001), and a holistic approach
using reliability theory may help ana-
lyze, understand, and, perhaps, control it.
We suggest, therefore, adding reliability
theory to the arsenal of methodological
approaches applied in aging research.
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